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ABSTRACT 
 

In this paper, we principally explore flat modules over a commutative ring with identity.  We do 
this in relation to projective and injective modules with the help of derived functors like Tor and 
Ext.  We also consider an extension of the property of flatness and induce analogies with the 
“special cases” occurring in flat modules.  We obtain some results on flatness in the context of a 
noetherian ring.  We also characterize flat modules generated by one element and obtain a 
necessary condition for flatness of finitely generated modules. 
 
I. DEFINITIONS • Flat modules: Those modules F for 

which the functor _⊗F is exact are 
termed flat modules. 

 
Let R be a commutative ring with 

identity and consider the modules over R. • Derived functors: Let T be an additive 
functor and N be an R-module. If the 
Ci’s are all projective modules and the 
following sequence is exact:                  
…. →…→C1→C0→N→0, then we have 
a projective resolution of N. The ith-
derived functor with respect to T is the 
homology module at T(Ci ), i.e., the 
quotient of the kernel of the map leaving 
T(Ci) to the image of the map entering it 
from T(Ci-1).  It can be proved that the 
derived functor is determined uniquely 
up to isomorphism by any projective 
resolution [1-7]. 

• Exact sequence: A sequence of maps 
A→B→C is said to be exact at B if the 
image of the map “entering” B is equal 
to the kernel of the map “leaving” B.  

• Functor: It is a map from the set of R-
modules to itself.  

• Exact functor: A functor T which when 
applied to all the terms of an exact 
sequence induces another exact 
sequence is said to be exact. The 
functor T in question should be additive, 
i.e. if f is a map from M to N, there 
should exist an induced map T(f) from 
T(M) to T(N).  • Projective modules: A module P having 
the following property: If p is a map from 
M onto N and f is a map from P to N, 
there exists a map g from P to M such 
that pog = f. In other words, P is such 
that the functor Hom(P,_) is exact. 

II. FLATNESS 
 

Let R be a commutative ring with 
identity [2]. Flatness may be defined through 
either of the following equivalent conditions: 
 • Injective modules: A module Q having 

the following property: If i is a one to one 
map from K to M and f is a map from K 
to Q, there exists a map g from M to Q 
such that goI = f. In other words, the 
functor Hom(_,Q) is exact. 

(i) If P→Q is a monomorphism of R-
modules, the induced map from M⊗P → 
M⊗Q is also a monomorphism. 

(ii) The functor _ ⊗M is exact.  
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We note the following interesting 
isomorphism:  

Hom(E,Hom(F,G)) ≅ Hom(E⊗F,G).1   
From these we obtain the following results:   
 

Result (a): Suppose that G is injective 
and we have the exact sequence: 
0→Hom(M,G)→Hom(N,G) →Hom(P,G) 
→0.  If E is flat, the functor Hom(E,_) 
preserves the exactness of this 
sequence.  Thus, the functor Hom(_,G) 
for injective G enables a flat module to 
do what a projective module does.   
This follows if we apply the functors E⊗_ 
and Hom(_,G) one after the other to the 
sequence 0→P→N→M→0. Each of 
these functors preserves the exactness 
of the sequence. 

 
Result (b): The condition that 
Hom(E⊗_,G) is exact can be replaced 
by the condition that Hom(E,G) is 
injective.  We will now prove that if 
Hom(E,G) is injective for all injective 
modules G, then E is flat.   

 
Result (c): If E and F are projective, so 
is E⊗F. This is because the successive 
use of the two functors Hom(F,_) and 
Hom(E,_) can be replaced by the 
functor Hom(E⊗F,_).  

 
Result (a) can also be used to characterize 
flat modules.  If we assume that the functor 
Hom(E⊗_,G) is exact for all injective 
modules G, we can prove that E is flat. 

Let M be an arbitrary R-module. We 
represent M as the quotient of a free module 
F.  Thus we have the exact sequence 
0→K→F→M→0.  Tensoring with E, we have 
the exact sequence 0→Tor(M,E)→E⊗K→ 
E⊗F→E⊗M→0. 

Let G be any injective module.  
Then 0 → Hom(E⊗M,G) → Hom(E⊗F,G) → 
Hom(E⊗K,G) → Hom(Tor(M,E),G) → 0 is 
exact.  But, if we assume that Hom(E⊗_,G) 
is exact, we have Hom(Tor(M,E),G)=0 for all 
injective G.  Now, Tor(M,E) can be 
embedded in some injective module G and 

hence we have Tor(M,E)=0 for all modules 
M.  Thus, E is flat. 

 
III. DEFINITION OF THE EXT 

FUNCTOR 
 

Suppose that M is an arbitrary R-
module and that the following is a projective 
resolution of M:...→C2 →C1 →C0 →M →0.  
We consider the nth right derived functor of 
Hom(_,N).  This is denoted by Extn(M,N).  If 
0 →M’ →M →M’’ →0 is exact, we have the 
exact sequence, 0 → Hom(M’’,N)→ 
Hom(M,N) → Hom(M’,N) → Ext1(M’’,N) 
→Ext1(M,N) →Ext1(M’,N) →…. 

From this, we obtain the following 
set of equivalent statements: 
 

(i) M is projective. 
(ii) Extn(M,N)=0 for all N and all n>=1.  
(iii) Ext1(M,N)=0 for all N.     

 
We first determine as to when there exist 
projective modules that are direct 
summands of R.  In this respect, we obtain 
the result that follows. 
 

Result: There exist projective modules 
that are direct summands of R if and 
only if R contains idempotents other 
than 0 and 1.  

 
Suppose that R can be written as a direct 
sum I⊕J, where I and J are submodules 
(and hence ideals of R).  Then 1 can be 
written as a sum i+(1-i), where i is in I and 1-
i is in J.  Consider the element i(1-i).  This 
lies in both I and J and hence must be 0.  
Thus i is an idempotent in R. If i is 0 or 1, 
one of the submodules I and J will contain 1 
and hence will be equal to R. Thus, R 
contains an idempotent not equal to 0 or 1.  
            Conversely, if we assume that R 
contains an idempotent j ≠ 0,1 we always 
have a nontrivial projective module which is 
a direct summand of R.  Consider the ideals 
(j) and (1-j).  None of these modules is zero 
and hence it is enough to show that their 
intersection is 0.  Say that jx = (1-j)y. Then y 
= j(x+y).  Then jx = (1-j)j(x+y).  But j(1-j) = 0 
and hence jx = 0.  Thus, the intersection is 
(0).   

                                            
1 We note that the RHS is symmetric in E 
and F, while the LHS is apparently not so.  
We have Hom(E,Hom(F,G)) ≅ 
Hom(F,Hom(E,G)). 
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        0       (i) M is a flat module. 
(ii) Tori(N,M)=0 for all R-modules N and 

all i>0. 
                                                     ↓ 
                                        0    Tor(N,M) 

(iii) Tor1(N,M)=0 for all R-modules N.                                       ↓             ↓ 
                    M’⊗N’→  FM⊗N’  → M⊗N’→  0 
b. Isomorphisms                       ↓              ↓             ↓           

           0 → M’⊗FN → FM⊗FN → M⊗FN → 0 Now that we have defined both Ext 
and Tor, we obtain the following 
isomorphisms: 

                    ↓                ↓             ↓ 
                  M’⊗N  →  FM⊗N  → M⊗N   → 0   
                     ↓                ↓            ↓ (a) For any projective module P: 

Hom(P,Ext(F,G))≈Ext(P⊗F,G) for all F 
and G. 

                      0                0             0  
 
Figure 1.  A ‘tensor product’ of the 
sequences in (1). 

(b) For any injective module Q: 
Hom(Tor(E,F),Q)≈Ext(F,Hom(E,Q)) for 
all F and finitely generated E.  

 To prove (a) we start with the exact 
sequence:  0 →G →In →I →0, where In is 
an injective module. (n.b., Any module can 
be embedded in an injective module.)  We 
obtain:  0 → Hom(F,G) → Hom(F,In) → 
Hom(F,I) → Ext(F,G) → 0.  Since P is 
projective, we have: 0→Hom(P,Hom(F,G)) 
→Hom(P, Hom(F,In)) → Hom(P, Hom(F,I)) 
→Hom(P,Ext(F,G)) →0.  But we can directly 
obtain:  0 → Hom(P⊗F,G) → Hom(P⊗F,In) 
→Hom(P⊗F,I) → Ext(P⊗F,G) → 0.  Since 
the first three terms of the two exact 
sequences are isomorphic, we have the 
result of part (a). 

IV. THE TOR FUNCTOR AND 
FLATNESS 

 
a. Symmetry of the Tor Functor 
 

The Tor functor directly measures 
the degree to which a module is flat.  As the 
tor is part of a family of functors, it lends 
itself to defining flatness in a more general 
setting.   First we show that the tor functor is 
symmetric: Tor(M,N) ≅ Tor(N,M). 

Represent M and N as quotients of 
flat modules, 
 

To prove part (b), we start with the 
exact sequence:  0 → I → Fr → E → 0, 
where Fr is a free module.  (i.e. We write E 
as the quotient of a free module.)  We tensor 
the sequence with F to obtain:  0 → Tor(E,F) 
→ I ⊗F → Fr⊗F → E⊗F → 0. 

0 → M’ → FM → M → 0 
0 → N’ → FN →   N → 0                      (1) 

 

We now ‘tensor the sequences with each 
other’—as shown in Figure 1, above.  The 
snake lemma yields the exact sequence, 
0 → Tor(N,M) → M’⊗N → FM⊗N.  But we 
already have, Applying the functor Hom(_,Q) we 

obtain 0 → Hom(E⊗F,Q) → Hom(Fr⊗F,Q) 
→Hom(I⊗F,Q)→Hom(Tor(E,F),Q) → 0.  But, 
we also have: 0 → Hom(E,Q) → Hom(Fr,Q) 
→ Hom(I,Q) →0.  And we get:  0→ 
Hom(F,Hom(E,Q)) → Hom(F,Hom(Fr,Q)) → 
Hom(F, Hom(I,Q)) → Ext(F,Hom(E,Q)) → 0.  
Hom(Fr,Q) is isomorphic to a direct sum of 
finitely many copies of Q and hence is 
injective (since E is finitely generated, Fr 
may be taken to be of finite basis). From the 
isomorphism of the first three terms in the 
two exact sequences, we obtain part (b). 

 

          0 → Tor(M,N) → M’⊗N → FM ⊗N,  
 

and hence Tor(M,N) ≅ Tor(N,M).  An R-
module M is flat if and only if Tor(N,M) = 0 
for all R-modules N.  If we have a projective 
resolution of N, say, 
 
          … →C2→C1→C0→N→0, 
 
then Tor is the ‘1st’  derived functor of the 
complex derived by tensoring the above 
resolution by M. Similarly Torn is the nth 
derived functor of the complex. Derived 
functors (of additive functors) are 
independent of the resolution chosen and 
hence we have the following set of 
equivalent statements: 

 
c. Result of the Long Exact Sequence 
 

First, we note that the long exact 
sequence of homology gives us the 
following: If  0→M’→M→M’’→0 is an exact  
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Clearly, Tork(N,M)=0 iff Tork-1(I,M) = 0. 
Hence, M is k-flat if and only if Tork-1(I,M) = 0 
for all submodules I of free modules.  

sequence, then the following is exact:  …→ 
Tor2(M’,N) → Tor2(M,N) →Tor2(M’’,N) → 
Tor1(M’,N)→Tor1(M,N)→Tor1(M’’,N)→ M’⊗N 
→ M⊗N→ M’’⊗N→0.  If N is an R-module 
such that Torj(M,N)=0 for all modules M, it is 
easy to see that Tork(M,N)=0 for all modules 
M and all k>j. This follows easily from the 
above long exact sequence. Any module M 
can be written as the image of a free module 
F and if we tensor that exact sequence by N 
to obtain its long exact sequence, we have 
the result. 

         We can also take another look at the 
result: If Hom(F,Q) is injective for each 
injective module Q, then F is flat. We can 
extend this to the following:  
 

Result: If F is finitely generated F is 2-
flat if and only if Hom(F,Q) is 2-injective 
for each injective module Q.              

 

If F is 2-flat, it must be the quotient of a free 
module Fr with respect to a flat module I:0 
→I→Fr→F→0. If Q is injective, we obtain 
the sequence: 

 
d. Follow-on Definitions and Observations 
 

We therefore define the following:  0→Hom(F,Q)→Hom(Fr,Q) →Hom(I,Q) →0 
 From this we obtain: Ext(E,Hom(I,Q))→ 

Ext2(E,Hom(F,Q)) → Ext2(E, Hom(Fr,Q)) → 
Ext2(E, Hom(I,Q)). 

• A module M is k-flat if Tork(N,M)=0 for 
all R-modules N. (And we define k-
projective and k-injective likewise with 
Extk) The first and last terms are zero because 

Hom(I,Q) is injective (since I is flat). Also 
Hom(Fr,Q) is isomorphic to a direct sum of 
finitely many copies of Q and hence is 
injective.  Thus Ext2(E,Hom(F,Q)=0 for any 
E.  Thus Hom(F,Q) is 2-injective. 

 
Analogously, we have the following set of 
equivalent statements: 
 

(i) M is k-flat. Conversely, suppose that Hom(F,Q) 
is 2-injective for any injective module Q.  Let 
I and Fr be defined as in the previous part. 
We can obtain the exact sequence:  

(ii) Tork(N,M)=0 for all modules N. 
(iii) Torj(N,M)=0 for all N and all j>=k. 

        
      Thus, if 0→N’→N→N’’→0 is an exact 
sequence and M is a 2-flat module, it is 
carried to the exact sequence: 

 

0→Hom(F,Q)→Hom(Fr,Q)→Hom(I,Q)→0. 
 

Applying the functor Hom(E,_), we get: 
Ext(E,Hom(Fr,Q)) → Ext(E,Hom(I,Q)) → 
Ext2(E,Hom(F,Q)) → Ext2(E,Hom(Fr,Q)).  
The first and last terms are zero.  Since 
Hom(F,Q) is 2-injective, the third term is also 
zero.  Thus Hom(I,Q) is injective.  Hence I is 
flat.  Thus, F is 2-flat.  

              

0→Tor(N’,M)→Tor(N,M)→Tor(N’’,M)→N’⊗M
→N⊗M→N’’⊗M→0 
 

For 3-flat modules the sequence will have 
the Tor2 terms; for 4-flat modules the 
sequence will have Tor3 terms and so on. 
 If a module M is 2-flat, we want to 

find conditions under which it becomes flat 
(or 1-flat). Accordingly, we have the 
following result: 

e. Results for k-flat Modules 
 

Now we have an if and only if 
condition for k-flat modules.  

Result: The following statements are 
equivalent: 

 

Result: “ A module M is k-flat if and only 
if Tork-1(I,M)=0 for all submodules I of 
free modules.”   

(ii) M is flat. 
(iii) M is 2-flat and Tor(Q,M)=0 for all 

injective modules Q.  

In order to demonstrate this, we take an 
arbitrary module N and write it as the 
quotient of a flat (free) module F: 
0→I→F→N→0.  We tensor the sequence by 
M and write out the long exact sequence: 

(i)⇒(ii) is obvious. 
       

To prove the second part, we use the fact 
that every module can be embedded into an 
injective module.  Let M be 2-flat and N be 
an arbitrary R-module. Then there exists an 
injective module Q such that N can be 
embedded in Q.  Thus, there is an exact 

→…→0→Tork(N,M)→Tork-1(I,M)→0→…→ 
Tor1(N,M)→I⊗M→F⊗M→N⊗M→0.         
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sequence 0→N→Q→Q/N→0.  Since M is 2-
flat, we have the sequence: 
  

0→Tor1(N,M)→Tor1(Q,M)→Tor1(Q/N,M)→N
⊗M→… 
 

If we allow Tor(Q,M) = 0 for all injective 
modules Q, we have Tor(N,M) = 0 for all 
modules N. Hence, M is flat. 

 
Each of the properties (flatness, 2-

flatness and so on is a local property: 
 

Result: The following statements are 
equivalent: 
(i) M is k-flat. 
(ii) Mp is k-flat for each prime ideal p. 
(iii) Mm is k-flat for each maximal ideal 

m.  
  
Let …→C2→C1→C0→N→0 be a projective 
resolution of an R-mdoule N.  We form the 
complex M⊗C.  Now, Tork(N,M) is the nth 
homology module of this complex and its 
localizations are the homology modules of 
the complex after localization.  Since Q = 0 
⇔ each Qp = 0 ⇔ each Qm = 0 for any 
module Q, and we have our result.   
 
V. THEOREM 
 
Theorem: Let M be an R-mdoule. If I is an 
ideal of R, then the map I⊗M→M is an 
injection if and only if Tor(R/I,M)=0. The 
module M is flat if and only if this is so for 
every ideal I. 
 
Proof: Consider the exact sequence:  
0→I→R→R/I→0.  We obtain the exact 
sequence:  0→Tor(R/I,M)→I⊗M→R⊗M. 
Since R⊗M=M, Tor(R/I,M) is the kernel of 
the map from I⊗M to M.  Thus the map is an 
injection if and only if Tor(R/I,M)=0.   
            Now, assume that Tor(R/I,M)=0 for 
all ideals I. Suppose that P→Q is an 
injection of R-modules M⊗P→M⊗Q is not 
an injection. Then there exists a non-zero 
element m⊗p that goes to zero. If we restrict 
the map to the module generated by the 
finitely many elements required to take m⊗p 
to 0, we obtain a finitely generated module 
for which this map is not an injection. But 
every finitely generated module can be 
decomposed into a finite chain of 
submodules, the successive quotients of 

which are cyclic modules and hence 
isomorphic to some R/I.  Thus, Tor(R/I,M)=0 
for each I implies that M is flat. 
 
VI. FLATNESS OF PROJECTIVE 

MODULES 
 
              The above theorem shows that in 
order to check whether a module is flat, we 
need to consider the tensor products I⊗M, 
where I is an ideal.  Suppose that x is a non-
zero element of M and a is an element such 
that ax=0. Clearly, a is a nonunit and hence 
there exists a maximal ideal m containing x. 
Since the map from m⊗M to M must be 
injective, we must have a⊗x=0 in m⊗M. In 
general, we can say that if I is an ideal and 
∑aixi=0 with ai∈I we must have ∑ai⊗xi=0. In 
this respect, we state the following criterion 
(without proof) of when an element of the 
tensor product of two modules M and N is 
zero. 
 

Criterion: Let N be generated by a set of 
elements {ni}. Every element of M⊗N may 
be written as a finite sum ∑mi⊗ni, where the 
mi lie in M.  Such an expression is 0 iff there 
exist elements mj’ of M and elements aij of R 
such that ∑aijmj’=mi for each i (sum is taken 
over j) and ∑aijni=0 for each j (sum is taken 
over i).  
 

Projective modules are always flat. 
This follows from the fact that a direct sum 
(finite or infinite) of R-modules is flat if and 
only if each of its direct summands is finite. 
This result can be easily generalized: 
 

Result: A direct sum of R-modules is k-
flat if and only each of its direct 
summands is k-flat.   

  

We will actually prove that Tork(P,M⊕N)=0 iff 
Tork(P,M)=0 and Tork(P,N)=0. This is true 
for k=1. We assume it to be true up to k-1.  
Express P as a quotient of a free module: 
0→I→F→P→0 and consider the exact 
sequence 

0→Tork(P,M⊕N)→Tork-1(I,M⊕N)→0. 
If Tork(P,M⊕N)=0, we have Tork-1(I,M⊕N)=0 
which means that Tork-1(I,M)=0 and so also 
for N. From the sequence obtained by 
substituting M for M⊕N in the above 
sequence, we have Tork(P,M)=0. The 
converse is proved similarly.    

We note that properties of flat 
modules tend to carry over to k-flat modules 
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(ii) M is 2-flat and Tor(R/q,M)=0 for 
each primary ideal q of R.  

in an analogous manner. Let us generalize 
the statement “Projective modules are flat”. 
  

Let M be a non-zero cyclic module over a 
local ring (R,M). Then M is isomorphic to 
some R/I.  Let us assume that I is non-zero.  
Suppose that M is flat. Take an element a in 
I such that ax=0, where x is the generator of 
the cyclic module M. Since M is flat, there 
exist elements b1, b2…bk in R and elements 
y1,y2…yk in M such that bja=0 for each 
0<j<=k and x=∑bjyj. Let yj=rjx and cj=bjrj. 
Then, each cja=0 for each j and x is 
annihilated by t=1-∑cj. Note that each of the 
c’s lies in Ann(a). We assume that Ann(a) is 
contained in m. Then t is not in m and hence 
t is a unit. Since tx=0, we have x=0. This is a 
contradiction. Hence Ann(a)=R and a=0. 
Thus, if M is same as R/I, I cannot contain a 
non-zero element. Thus the only cyclic and 
flat modules over a local ring are R and 0.  

Result: k-projective modules are k-flat. 
 
Let M be k-projective, i.e. Extk(M,N)=0 for all 
N. Let k>1. We write M as the quotient of a 
free module F: 0 →I →F →M →0.  We 
derive the exact sequence: 
0→ Extk-1(I,N) → Extk(M,N) →0 for any 
module N.  Thus Extk-1(I,N)=0 for all N and 
hence I is k-1 projective. We know that 
projective modules are flat and hence we 
may assume the statement to be true up to 
k-1. Thus I is k-1 flat. Now, we also have the 
exact sequence: 0→ Tork(M,N) → Tork-1(I,N) 
→ 0.  Since I is k-1 flat, Tork-1(I,N)=0 for all N 
and hence Tork(M,N)=0 for all N. Thus, M is 
k-flat.  
 
VII. FLATNESS IN NOETHERIAN 

MODULES AND LOCAL RINGS 
              The above result can be restated 
for a general ring: If M is a non-zero, cyclic 
and flat module over a ring R and a 
annihilates M, Ann(a) is not contained inside 
the Jacobson radical of R. In other words, if 
R/I is flat, Ann(i) is not contained inside the 
Jacobson radical for any i in I.      

 
Let us assume that R, in addition to 

being a commutative ring with identity, 
satisfies the noetherian condition.  
               If M is a finitely generated module 
over R, M is flat if and only if Tor(R/I,M)=0 
for each ideal of R. 

               Suppose that R/I is flat and I is 
neither 0 nor R. Hence the localization  
(R/I)m where m is any maximal ideal, is flat. 
Now Rm/Im is a cyclic module over the local 
ring Rm. Hence, it must be either 0 or Rm. 
Thus, we have Im=Rm or Im=0. If m does not 
contain I, we have Im=Rm. Hence, we have 
the result: 

 

Result: The following statements are 
equivalent: 
(i) Every finitely generated R-module is 

flat. 
(ii) Each of the quotient modules R/p (p 

a prime ideal) is flat. 
 (iii) Every R-module is flat, i.e., R is 

absolutely flat.  Result: R/I is flat over R if and only if 
Im=Rm or Im=0 for each maximal ideal m 
of R containing I.  

To prove that (ii)⇒(i), we use the fact that 
every finitely generated R-module can be 
filtered as: M=M0⊃M1⊃….⊃Mk=0 where 
successive quotients are isomorphic to R/p 
for some prime ideal p.  Thus, Mk-1 is flat. 
Since Mk-2/Mk-1 is flat, we have proved that 
Mk-2 is flat.  Proceeding thus, we can show 
that M is flat.  

 
The “only if” part has been proved above. 
The “if” part is obvious since M is flat ⇔ 
each Mm is flat.  

We may extend this procedure to 
flat modules having a minimal generating set 
consisting of two elements, say m1 and m2.  
Suppose that n1m1+n2m2=0. Then there 
exist elements aij in R, i=1,2, j=1,2…k such 
that 

To prove that (i)⇒(iii), we use the 
fact that an R-module M is flat iff 
Tor(R/I,M)=0 for each I.  Since R/I is finitely 
generated, R/I is flat.  Thus, Tor(R/I,M)=0 for 
each M and hence M is flat.  a1jn1+a2jn2=0 for each j. 

and       (∑a1jrj –1)m1+(∑a1jsj)m2=0  
(∑a2jrj )m1+(∑a2jsj -1)m2=0. Result: The following statements are 

equivalent: Now suppose that R is a local ring. Consider 
the ideal I generated by elements a where 
for each a, there exists b such that 

 

(i) M is flat. 
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an1+bn2=0.  If this ideal is contained in the 
maximal ideal of R, the coefficient of m1 in 
the 1st equation becomes a unit and hence 
{m1,m2} is not a minimal generating set. 
Thus, we can say that I=R.  The same holds 
for the second “co-ordinate”.  This process 
can be extended to higher dimensions.  
Thus, we can develop a necessary condition 
for flatness of a finitely generated module 
over a local ring.  This may be extended to a 
general R. 
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