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ABSTRACT 
A synthetic set of aerosol optical depths (AODs) generated from a standard set of aerosol size distributions was analyzed by a 
parameter based particle swarm optimization (PBPSO) routine in order to test the reproducibility of the results. Junge and 
lognormal size distributions were consistently reproduced. Gamma and bimodal distributions showed large variability in solutions. 

 values were used to determine the best subset of possible solutions allowing quantification of parameters with uncertainties 
when using PBPSO. AODs measured by a sun photometer on a clear day (20160413) and a foggy day (20160508) were then 
processed by the PBPSO program for both bimodal and lognormal distributions. Results showed that in general the foggy day has 
smaller  values indicating that the PBPSO algorithm is better able to match AODs when there is a larger aerosol load in the 
atmosphere. The bimodal distribution from the clear day best describes the aerosol size distribution since the  values are lower. 
The lognormal distribution best describes the aerosol size distribution on the foggy day (20160508). 
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INTRODUCTION 
Atmospheric aerosols are of particular interest due to their environmental and public health impact.1, 2 For these reasons it is 
important to monitor atmospheric aerosol concentrations and size distributions. Atmospheric aerosols are tiny particles ranging in 
diameter from 0.001-10 μm suspended in the atmosphere. Natural aerosols are commonly made up of soil, minerals, salts, and 
various other chemicals mixed with water. Anthropogenic aerosol sources include industrial pollution and vehicle emissions. 
Aerosols are non-uniformly distributed throughout the troposphere and stratosphere with highly variable size distributions. 
Atmospheric aerosols can provide a surface on which chemical reactions occur, serve as condensation and ice nuclei, scatter and 
absorb light, and can influence the electrical properties of the atmosphere.3 

 
Aerosol optical depth (AOD) is a common method for measurement of air quality and aerosol research. AOD can be inferred by 
comparing solar irradiance values to the standard E-490 solar spectrum created by the American Society for Testing and 
Materials4 and subtracting off Rayleigh scattering terms. Higher AODs correspond to more scattering and/or absorption of 
sunlight, indicating that one or more of the aerosol size distribution properties has increased (i.e., particle number, particle size, 
particle shape, and/or index of refraction). Given a set of AODs, the aerosol size distribution may be inferred by inverting a set 
of Fredholm equations, 

 

 
 
where Qext is the Mie extinction coefficient and n(r) is the aerosol size distribution. Matrix inversion,5–7 iterative,8–10 and maximum 
entropy spectral11 methods have been used to retrieve aerosol size distributions. However, inversion of Equation 1 is an ill-posed 
problem classified as a NP (nondeterministic polynomial) problem meaning that the inversion can be performed using the two-
step process for solving any NP problem: (1) guess a solution in a non-deterministic way and (2) use a deterministic algorithm to 
verify or reject the guess.12  It is important to note that accepting a guess does not guarantee that the best possible solution has 
been generated; it merely indicates that the solution is one of many possible valid solutions that fit the deterministic criteria. 
 
Recently, particle swarm optimization (PSO) algorithms that implement the two-step NP problem solving method have been used 
to retrieve size distributions from Equation 1. PSO is an iterative algorithm that uses a swarm of particles randomly generated in 
the solution space to identify size distribution parameters that yield calculated AODs close to those inferred from solar irradiance 
measurements. Closeness is quantified by a fitness function and the iterations continue until a stop criteria that depends on the 
fitness function is reached or until a predefined maximum number of iterations have been performed. The goal of PSO is to 

Equation 1. 
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minimize the fitness function by moving each particle in the swarm simultaneously toward its own and the swarm’s previous best 
positions.13, 14 Each particle’s position is used to calculate an AOD and fitness value; the particle with the smallest fitness value is 
presumed to represent the best inversion of the AODs inferred from irradiance measurements and corresponds to the best 
position. However, given the nature of NP problems, multiple runs of PSO algorithms will in general converge to different 
solutions corresponding to local minima or the global minimum in the essentially infinite solution space.15, 16 
 
Examples of PSO algorithms in use include Yuan et al.’s (2010, 2011) Stochastic Particle Swarm Optimization (SPSO)17, 18 and 
Mao & Li’s (2015) Improved Particle Swarm Optimization (IPSO).19 Both use a fitness function based on the difference between 
measured and inferred AODs: SPSO uses the square root of the average variance; IPSO uses the inverse of half the sum of the 
variances. SPSO’s stop criteria are (1) when changes in the best fitness function are less than 10 10 and (2) when 1000 iterations 
have been performed. IPSO stops after 30 iterations without placing constraints on fitness function convergence. The remaining 
difference between these two algorithms is that SPSO generates a random particle with each iteration in order to explore more of 
the solution space while IPSO uses a variable velocity to speed up convergence. Neither method specifies what type of boundary 
conditions are employed. Neither paper discusses the reproducibility of results when the algorithms are run on the same set of 
data more than once. There is no measure of how often their algorithms may focus in on a local minimum of the fitness function 
instead of the global minimum. Furthermore, Yuan et al.’s (2011) stop criterion of the fitness function changing by less than 10 10 
restricts the uncertainty in AODs inferred from spectral measurements (typically 0.1-2.5%20, 21) by many orders of magnitude. 
 
To address these deficiencies, a parameter-based particle swarm optimization (PBPSO) algorithm was written. Boundary 
conditions are such that particles moving outside the solution space are destroyed and a new random particle is generated. This 
boundary condition allows more exploration of the solution space. During each iteration, ten additional particles are generated to 
test for better solutions and then are destroyed. PBPSO’s fitness function is the reduced chi-squared of calculated and inferred 
AODs. Like previous algorithms, the fitness function for PBPSO is used to guide evolution of the swarm towards a best solution 
that is, ideally, the global minimum. Unlike previous algorithms, the stop criterion is based on the relative changes in size 
distribution parameters, not on the fitness function or some fixed number of iterations. Using a size parameter convergence 
criterion ensures that a swarm has converged to a solution. The PBPSO stop criteria are (1) the size distribution parameters have 
a relative change of less than 10 3% for 100 consecutive iterations or (2) the algorithm reaches 5000 iterations. After multiple runs 
of PBPSO on the same data set, the quality of each solution can be assessed using the corresponding fitness function values. 
 
METHODS AND PROCEDURES 
This research tests the reproducibility of the PBPSO algorithm for four different size distributions. This algorithm implements the 
following steps to solve the inverse radiation problem. 
 
Step 1: Input aerosol optical depths at 412, 441, 463, 479, 500, 520, 556, 610, 675, 750, 778, 870, and 1020 nm. These include the 
World Meteorological Organization (WMO) standard wavelengths (412, 500, 610, 675, 778 nm), WMO standard wavelengths 
shifted out of absorption bands (463, 870, 1020 nm), and five additional wavelengths (441, 479, 520, 556, 750 nm).22 Input the 
Mie extinction coefficient, Qext, for r = 0.001 μm. Choose bounds for the 
parameters depending on distribution type. Initialize a particle swarm and calculate AOD using Equation 2 at each 
wavelength  for each particle. Qext was calculated by using the Bohren-Huffman Mie scattering subroutine23 from rmin = 0.04 μm 
to rmax = 10 μm with a complex index of refraction = 1.5+0i giving a 2 9961 array. rmin was chosen as 0.04 μm since for r  0.04 
μm, Qext  0.0012 and the contribution to the AOD is negligible. The real part of  was chosen to be between water (1.33) and 
silica (1.54). 
 

 

 
Step 2: Calculate reduced chi-squared  value (Equation 3) for each particle where d independent parameters. 
 

 

 
Step 3: Compare current  with the previous   for each particle to determine if the new position is lower; if so it becomes a 
new local minimum, Pi, otherwise retain the previous local minimum.  
 

Equation 2. 

Equation 3. 
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Step 4: From the list of all Pi choose the one with the lowest  and set it as the global minimum, Pg. 
 
Step 5: Introduce ten randomly generated particles and see if their s are less than Pg; if so replace Pg with the lower value.  
 
Step 6: Check the stop criteria. (1) If the size distribution parameters have changed by less than 10 3% for 100 consecutive 
iterations then the program is terminated (Equation 4). (2) If the program has gone through 5000 iterations without reaching the 
stop criterion (1) terminate the program. Otherwise evolve the swarm and loop back to step 2.13 

 

 

 
Step 7: Repeat steps 1-6 ten times. Examine the final s for each run’s Pg: the lowest  is corresponds to the solution that is 
most likely to be the global minimum while the others correspond to solutions that are local minima. Since there is still no 
guarantee that the global minimum has been found, use a subset of the ten solutions defined by  to find size 
distribution parameter averages and standard deviations of the mean (SDOM). This process eliminates solutions that are deemed 
valid by step 2 of the NP selection process, but which represent outliers corresponding to local minima. 
 
A synthetic set of AODs was generated from a standard set of size distribution parameters  for each distribution 
(Table 1) in order to test the PBPSO algorithm. Aerosol optical depths at the 13 wavelengths were calculated for the four 
distributions listed in Table 1 for an assumed set of values for the parameters (N0 single mode distributions and 

0 0, N1 1 1 for the bimodal distribution) using the Bohren-Huffman Mie scattering subroutine.23 Parameter values were 
chosen to give AODs that might typically be obtained from a Kipp-Zonen PGS-100 sun photometer. These AODs were then 
used as input to the PBPSO program to evaluate how well the algorithm could reproduce the distribution parameters. The 
resulting  
multiple runs might produce different parameter values, it was hypothesized that choosing a subset of the results with the smallest 

s and then finding the mean and standard deviation of the mean (SDOM) of this subset of parameters would give a reasonable 
representation of the actual size distribution. The PBPSO algorithm was run ten times for each distribution type and the results 
were plotted against the known distribution. These results were evaluated as a standard for identifying the best way to analyze 
atmospheric data.  

Distribution Equation Parameters Solution Space 

Junge  N0=2.5×106  
1.0×103 0 ×109 

 
 

Gamma  N0=2.5×109  
1.0×106 0 ×1012 

 
 

Lognormal  N0=1.0×107  
1.0×104 0 ×1010  

 
 

Bimodal  
N0=1.0×107 0 0=0.307 
N1=2.5×105 1 1=0.307 

1.0×105 0 ×1011  
0  

0  
1.0×103 1 ×109  

1  
1  

Table 1. Typical distributions and solution space. To access synthetic data sets used and results, see http://www.physics.csbsju.edu/~awhitten/pso.html. 
 

RESULTS AND DISCUSSION 
Synthetic Data 
For Junge and lognormal distributions there was little to no variation in the results, but for the gamma and bimodal distributions 
the results seemed to vary so 

 
 
Junge Distribution 
After analyzing the results for the Junge distribution it was noticed that the plots of the resulting calculated number density 
distributions were identical. For all ten runs of the PBPSO program the   values are equal (2.05 10 13) and although there is 
variance in N0  3.0. The variation in N0 

Equation 4. 
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parameters and their variability is constrained only by the choice of solution space given in Table 1. Considered separately the ten 
values of N0 a normal distribution (all values fall within the 95th percentile), but 
because of their dependent nature it is their product, not the product of their individual averages, that is important. The PBPSO 
program gave N0 105 for all ten runs. Furthermore, the PB  for 
each wavelength every time.  
 
Lognormal Distribution  
The lognormal distribution of the sample data shows a generally uniform distribution with two small outliers (Figure 2). These 
two outliers prove to be runs two and eight which correspond to the results with the highest   values (~10 7

taken into consideration as the lowest value for this data set is 3.3 10 13. The distribution parameter values were N0 = 2.5 106 
cm 3  As shown in Table 2, the output means for each variable were in agreement with the 
distribution parameter values when taking the standard deviation of the mean (SDOM) into account. 
 

Figure 2. Size distribution functions output from the PBPSO algorithm reveal a tight grouping. The actual distribution function is hidden behind the red line. 
 

 N0 (cm 3) (μm)  
Mean 2.500×106 0.5004 0.30698 
SDOM 3×103 0.0003 0.00001 

Table 2.   
 
Gamma Distribution 
The gamma distributions showed some small, but significant variations. Therefore these distributions have been plotted on a 
smaller scale for the  (cm 3) axis in order to highlight the difference between runs. Despite these apparent differences, the 
PBPSO routine was able to reproduce the target AODs with  values ranging from 10 11 to 10 9. 
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     Figure 3.1 

 
 

 
                                                 Figure 3.2                                                                                           Figure 3.3  
 
Figure 3. The actual distribution function is represented as a dark blue line in each of the graphs. The PBPSO program has more trouble reproducing the gamma 
distribution as shown in Figure 3.1 PBPSO program can zero in on a wide range of solutions with smaller N0 
distribution) or higher N0 ribution) as shown in Figure 3.2 onstant the PBPSO program can produce a more consistent set 

 (see text). 
 
When no parameters are held constant, a wide range of solutions are seen (Figure 3.1). To understand why this might be the case, 
additional optimizations were performed holding  or  0 vary significantly resulting in 
little to no overlap of the values (Figure 3.2). With 0 stays relatively constant 
(Figure 3.3). This behavior is the result of the analytic forms of the Mie extinction coefficient and the gamma distribution. For 
visible and near infrared wavelengths Qext peaks at about 4.4 for r < 1 μm and then exhibits decreasing oscillations as shown in 
Figure 4. 
 

 
Figure 4. Mie extinction coefficient, Qext, calculated using the Bohren-
1.5+0i. The values at large radii decrease to approximately one half of the peak values that occur at radii less than 1 μm. 
 
This variation in Qext means that small changes in the contribution to AODs from small radii particles can be compensated by 
larger changes from large radii particles to yield the same AOD value. n the gamma distribution the r  term 
reduces contributions to the AOD for r < 1 μm and increases contributions to the AOD for r > 1 μm. The exponential term 
reduces contributions to the AOD for r > 1/ , but when combined with the r  term it results in a peak in the size distribution at 
r0  r0 constraining the peak of the distribution to the range 1.0 μm r  μm 
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which is greater than the radii of the peak values of Qext. L 0 because the decrease from r0 
down to r < 1 μm (where Qext , r0 
distribution to 0.7 μm r  μm. This range for r0 is also greater than the radii of the peak values of Qext  is fixed, 
the contribution to the AOD from small radii particles 0 

0  
 

ed effect of the dependence on radius of both Qext and the gamma 
distribution makes it difficult for PBPSO to zero in on the correct solution because multiple solutions meet the fitness criterion. 
Therefore, to use this PBPSO routine to retrieve gamma size distribution parameters it is recommended to run the optimization 
multiple times and extract the best retrievals based on  values. Using solutions with  eliminates outliers 
corresponding to local minima and the remaining solutions are used to calculate the means and SDOMs of the size distribution 
parameters (Tables 3.1-3.3). The set parameter values were N0 = 2.5 109 cm 3 -1 Not shown are the 

tly reproduces the correct N0 in agreement with the results 
of Yuan et al. 2010. 
 

 N0 (cm 3)  (μm-1)  
Mean 2.50×109 0.19 0.348 
SDOM 1.5×108 0.03 0.009 

Table 3.1.  
 

 N0 (cm 3) (μm-1)  
Mean 3.1×109 0.1 0.37 
SDOM 5×108 constant 0.02 

Table 3.2.  
 

 N0 (cm 3) (μm-1)  
Mean 2.5000×109 0.11 0.35 
SDOM 3×105 0.02 constant 

Table 3.3.  
 
Bimodal Distribution 
The bimodal distributions shown in Figure 5 indicate large variations in the retrieved size distribution parameters despite being 
able to reproduce the target AODs with small  values. Figure 5.1 shows that when no parameters are held constant there is 
variability in solutions that give similar aerosol optical depths (10 9 <  < 10 5). To examine this variability and understand 
which parameters PB Figure 5.2), N0 and 

0 stay relatively constant, but N1 1 do not (10 11 <  < 10 5 Figure 5.3) there is also more 
variability in N1 and 1 than in N0 and 0 (10 9 <  < 10 7). PBPSO is less consistent when determining the distribution at larger 
radii. The source of this inconsistency is most likely the relatively flat Mie extinction profiles at larger radii for visible wavelengths 
of light 1 0 1 0 1 are all held constant, N0 
and N1 values are exactly reproduced which is consistent with the findings in Yuan et al. 2011. 
 
To quantify the inconsistencies, subsets of results based on  values were analyzed to find the means and SDOMs 
of the size distribution parameters. For no constants (Figure 5.1) run seven (light yellow) is the standard and solutions with a  
> 3.43 10 7 were ruled out, resulting in five outliers for this set. In Figure 5.2 run seven (light yellow) is the standard as it has the 
lowest   value for the data set (2.7×10 11). After applying the  criterion three of the ten solutions are left. In Figure 5.3 run 
six (light blue) is the standard with  = 1.0×10 9. It is much easier to identify the outliers in this plot as they all lie within the 
second lognormal distribution and after applying the  criterion five of the ten solutions are left. In order to have significant 
averages for the six size distribution parameters it is necessary to eliminate outliers. 
 
The distribution parameters values were N0 = 1.0×107 cm 3 0 0 = 0.307, N1 = 2.5×105 cm 3 1 1 = 
0.307. Following the  rule stated above, the resulting size distribution parameters for no constants, both s held constant, and 
both s held constant are shown in Tables 4.1-4.3. 
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                                             Figure 5.1 

  
                                              Figure 5.2                                                                                           Figure 5.3 
 
Figure 5. The actual distribution function is indicated in dark blue. Figure 5.1 shows that when all parameters are allowed to vary there are multiple solutions that 
reproduce the aerosol optical depths. Figure 5.2 shows that when is held constant there is more variability in the width of larger aerosols. In Figure 5.2 the actual 
distribution is hidden behind the dark green line.  Figure 5.3 shows that when  is held constant there is more variability in the radius of larger aerosols. 
 

 N0 (cm 3) 0 (μm) 0 N1 (cm 3) 1 (μm) 1 

Mean 9.20×107 0.11 0.29 2.6×105 2.5 0.24 
SDOM 1.5×106 0.01 0.02 5×104 0.4 0.02 

Table 4.1.  
 

 N0 (cm 3) 0 (μm) 0 N1 (cm 3) 1 (μm) 1 

Mean 1.030×107 0.1 0.3056 2.8×105 2 0.26 
SDOM 1.0×105 constant 0.0004 7×104 constant 0.02 

Table 4.2. Bimodal results  
 

 N0 (cm 3) 0 (μm) 0 N1 (cm 3) 1 (μm) 1 

Mean 9.10×106 0.09990 0.307 1.62×105 2.8 0.307 
SDOM 1.0×105 0.00004 constant 8×103 0.1 constant 

Table 4.3.  
 
Atmospheric Data 
The PBPSO procedure is now applied to data taken by a Kipp & Zonen PGS-100 sun photometer on a clear day (2016-04-13) 
and a foggy day (2016-05-08). Aerosol optical depths inferred from 
observatory were processed ten times with the PBPSO algorithm. Solutions with  were eliminated and the 
remaining solutions were used to find the averages and SDOMs for size distribution parameters. Data from the two days was 
processed using a bimodal size distribution and a lognormal size distribution.  
 
Bimodal Distribution 
Aerosol optical depths at 13 wavelengths inferred from the PGS-100 and calculated for each of the tens runs of PBPSO for the 
clear day are shown in Table 5. Inferred AODs are reproduced by the PBPSO algorithm to within 3–7% for all wavelengths 
except for 610 nm, 750nm, and 778 nm where they are within 12–14%. 
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AOD 
from: 

Wavelength (nm) 
412 441 463 479 500 520 556 610 675 750 778 870 1020

PGS-100 0.241 0.207 0.201 0.200 0.191 0.195 0.187 0.181 0.131 0.103 0.095 0.091 0.070 –
Run 1 0.227 0.219 0.211 0.206 0.198 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.067 1.4E-3
Run 2 0.230 0.220 0.211 0.205 0.197 0.189 0.176 0.156 0.136 0.115 0.108 0.089 0.065 1.5E-3 
Run 3 0.229 0.220 0.212 0.206 0.198 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.066 1.4E-3 
Run 4 0.230 0.219 0.211 0.205 0.197 0.190 0.176 0.157 0.136 0.115 0.108 0.089 0.065 1.4E-3 
Run 5 0.229 0.220 0.212 0.206 0.198 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.067 1.4E-3 
Run 6 0.230 0.220 0.211 0.205 0.197 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.066 1.4E-3 
Run 7 0.229 0.220 0.211 0.205 0.197 0.190 0.176 0.156 0.135 0.114 0.108 0.088 0.066 1.4E-3 
Run 8 0.229 0.220 0.211 0.205 0.197 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.066 1.4E-3 
Run 9 0.230 0.220 0.211 0.205 0.197 0.189 0.176 0.156 0.135 0.115 0.108 0.089 0.066 1.4E-3 
Run 10 0.228 0.220 0.212 0.206 0.198 0.190 0.176 0.156 0.135 0.114 0.107 0.088 0.066 1.4E-3 
Table 5. Aerosol optical depths for a clear day (20160413) as inferred from the PGS-100 sun photometer and calculated for each run of the PBPSO algorithm 
using a bimodal distribution. 
 

Table 6 shows the AODs inferred from the PGS-100 and calculated for each of the tens runs of PBPSO for the foggy day. 
Inferred AODs are reproduced to within 0.4–7% for all wavelengths. 
 

AOD 
from: 

Wavelength (nm) 
412 441 463 479 500 520 556 610 675 750 778 870 1020

PGS-100 0.704 0.633 0.611 0.590 0.564 0.540 0.503 0.452 0.347 0.274 0.250 0.205 0.146 –
Run 1 0.691 0.652 0.620 0.597 0.566 0.539 0.490 0.422 0.352 0.285 0.263 0.205 0.141 7.0E-4
Run 2 0.691 0.652 0.619 0.596 0.566 0.539 0.490 0.422 0.352 0.285 0.264 0.206 0.140 7.1E-4 
Run 3 0.691 0.652 0.619 0.597 0.566 0.539 0.490 0.422 0.352 0.285 0.263 0.206 0.141 7.1E-4 
Run 4 0.693 0.652 0.619 0.596 0.565 0.537 0.488 0.420 0.351 0.285 0.264 0.207 0.143 7.2E-4 
Run 5 0.691 0.652 0.620 0.597 0.566 0.539 0.490 0.421 0.352 0.285 0.263 0.205 0.142 7.0E-4 
Run 6 0.689 0.651 0.618 0.596 0.566 0.538 0.490 0.422 0.352 0.286 0.264 0.206 0.140 7.2E-4 
Run 7 0.691 0.652 0.620 0.597 0.566 0.539 0.490 0.421 0.352 0.284 0.263 0.205 0.142 6.8E-4 
Run 8 0.687 0.650 0.618 0.596 0.567 0.539 0.491 0.424 0.354 0.287 0.265 0.207 0.140 7.2E-4 
Run 9 0.690 0.651 0.619 0.597 0.566 0.539 0.490 0.422 0.352 0.285 0.264 0.205 0.140 7.0E-4 
Run 10 0.691 0.651 0.619 0.596 0.566 0.538 0.490 0.422 0.353 0.286 0.264 0.206 0.138 7.4E-4 
Table 6. Aerosol optical depths for a foggy day (201600508) as inferred from the PGS-100 sun photometer and calculated for each run of the PBPSO 
algorithm using a bimodal distribution. 
 

 

 
                                              Figure 6.1                                                                                           Figure 6.2 
 
Figure 6. For the given days 20160413 in Figure 6.1 and 20160508 in Figure 6.2, all parameters are allowed to vary and there are multiple solutions that reproduce 
the aerosol optical depths. The reduced chi-squared values in the bimodal distribution are closer with little to no variance.  
 
The bimodal results (Figures 6.1-6.2) show that the  values are all within 10 4 of each other with little to no variance so 
following the earlier stated rule all values must be considered. For the 20160413 results there are two groups of solutions roughly 
40% of which are narrower with 1 values and 60% that are wider 1 values. Results show a 4% uncertainty in 
the median radius 0 of the small aerosol mode for the clear day and a 2% uncertainty in determining the median radius 0 of the 
small aerosol mode for the foggy day. For the large mode aerosols the uncertainties 1 are 18% and 16% for 
the clear and foggy days, which confirms the assessment for synthetic data that the median radius of the small aerosol mode is 
easier to pick out than the large aerosol mode (Tables 7.1-7.2). 
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 N0 (cm 3) 0 (μm) 0 N1 (cm 3) 1 (μm) 1 

Mean 2.78×107 0.167 0.147 3.5×104 2.2 0.212 
SDOM 2.7×106 0.007 0.009 1.2×104 0.4 0.023 

Table 7.1. Bimodal results 20160413 (clear day). 
 

 N0 (cm 3) 0 (μm) 0 N1 (cm 3) 1 (μm) 1 

Mean 8.6×107 0.171 0.124 7.3×104 1.12 0.214 
SDOM 4×106 0.003 0.005 1.6×104 0.18 0.022 

Table 7.2. Bimodal results 20160508 (foggy day). 
 
Lognormal Distribution 
Aerosol optical depths for the 13 wavelengths inferred from PGS-100 measurements and calculated for 10 runs of the PBPSO 
algorithm are shown in Table 8 for the clear day and Table 9 for the foggy day. AODs are reproduced to within 4–19% for the 
clear day and to within 0.2–7% for the foggy day. 
 

AOD 
from: 

Wavelength (nm) 
412 441 463 479 500 520 556 610 675 750 778 870 1020

PGS-100 0.230 0.164 0.162 0.159 0.154 0.165 0.156 0.156 0.100 0.086 0.083 0.099 0.084 –
Run 1 0.206 0.189 0.178 0.170 0.162 0.154 0.142 0.127 0.113 0.102 0.098 0.089 0.081 3.5E-3
Run 2 0.206 0.189 0.178 0.170 0.162 0.154 0.142 0.127 0.113 0.102 0.098 0.089 0.081 3.5E-3 
Run 3 0.203 0.189 0.178 0.171 0.163 0.155 0.143 0.127 0.113 0.101 0.097 0.089 0.081 3.5E-3 
Run 4 0.205 0.189 0.178 0.171 0.162 0.154 0.142 0.127 0.113 0.101 0.098 0.089 0.081 3.5E-3 
Run 5 0.205 0.189 0.178 0.171 0.162 0.155 0.143 0.127 0.112 0.099 0.095 0.088 0.087 3.3E-3 
Run 6 0.204 0.189 0.178 0.171 0.162 0.154 0.142 0.127 0.113 0.101 0.098 0.089 0.081 3.5E-3 
Run 7 0.206 0.189 0.178 0.171 0.162 0.154 0.142 0.127 0.113 0.101 0.098 0.089 0.081 3.5E-3 
Run 8 0.205 0.189 0.178 0.171 0.162 0.154 0.142 0.127 0.113 0.101 0.098 0.089 0.081 3.5E-3 
Run 9 0.203 0.189 0.178 0.171 0.163 0.155 0.143 0.127 0.113 0.101 0.098 0.089 0.081 3.5E-3 
Run 10 0.204 0.189 0.178 0.171 0.163 0.156 0.143 0.127 0.112 0.099 0.095 0.087 0.086 3.3E-3 
Table 8. Aerosol optical depths for a clear day (20160413) as inferred from the PGS-100 sun photometer and calculated for each run of the PBPSO algorithm 
using a lognormal distribution. 

 
AOD 
from: 

Wavelength (nm) 
412 441 463 479 500 520 556 610 675 750 778 870 1020

PGS-100 0.704 0.633 0.611 0.590 0.564 0.540 0.503 0.452 0.347 0.274 0.250 0.205 0.146 –
Run 1 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4
Run 2 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 3 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 4 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 5 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 6 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 7 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 8 0.695 0.652 0.618 0.594 0.563 0.536 0.487 0.421 0.353 0.288 0.266 0.209 0.142 5.5E-4 
Run 9 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Run 10 0.690 0.651 0.619 0.596 0.566 0.539 0.490 0.423 0.354 0.287 0.265 0.206 0.138 5.2E-4 
Table 9. Aerosol optical depths for a foggy day (201600508) as inferred from the PGS-100 sun photometer and calculated for each run of the PBPSO 
algorithm using a lognormal distribution. 

 

 
                                      Figure 7.1                                                                                           Figure 7.2 
Figure 7. For the given days 20160413 in Figure 7.1 and 20160508 in Figure 7.2, all parameters are allowed to vary and there are multiple solutions that reproduce 
the aerosol optical depths. The solutions for the lognormal distribution are almost perfect and extremely uniform. 
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The lognormal results (Figures 7.1-7.2) show that once again the   values are almost identical; all being equal or off by 10 4 of 
each other for the clear day and 10 5 for the foggy day. Therefore all solutions are used to find the averages and SDOMs of the 
parameter values. Results for N0, are shown in Table 10.1 for the clear day (20160413) and Table 10.2 for the foggy day 
(20160508).   
 

 N0 (cm 3) (μm)  
Mean 4.98×107 0.122 0.211 
SDOM 2.7×106 0.003 0.004 

Table 10.1. Lognormal results 20160413 (clear day). 
 

 N0 (cm 3) (μm)  
Mean 1.20×108 0.1453 0.159 
SDOM 6×106 0.0026 0.003 

Table 10.2. Lognormal results 20160508 (foggy day). 
 
In general, the foggy day has smaller  values indicating that the PBPSO algorithm is better able to match AODs when there is a 
larger aerosol load in the atmosphere. Tables 5 and 8 indicate that a bimodal distribution best describes the aerosol size 
distribution on the clear day (20160413) since the  values are lower in Table 8. Tables 6 and 9 indicate that a lognormal 
distribution best describes the aerosol size distribution on the foggy day (20160508). 
 
CONCLUSIONS 
A PBPSO algorithm was used to analyze a synthetic set of atmospheric aerosol data in order to determine the reproducibility of 
results for four types of assumed size distributions. For Junge and lognormal distributions, there was little to no variation in the 
results from multiple runs of the algorithm, but the gamma and bimodal distributions the results indicated a large variability in size 
distribution parameters that would yield the same set of optical depths at 13 wavelengths. Running additional tests ho
and/  gave an indication of the sources of this variability. Inherent to the gamma distribution function, 

 the radius increases to the peak radius r0 
tion is 

not symmetric in log space about r0. Hence, the retrieved size 
contribution to AODs from small radii particles (where Qext has a maximum) becomes highly variable leading to large variations 
in N0  When retrieving bimodal distributions, the relatively flat Mie extinction profiles at larger radii for visible wavelengths 

1, leading multiple valid solutions in which the relative contributions to the 
AODs from the small radius mode and the large r 0 1 0 1 are all 
held constant, N0 and N1 values are exactly reproduced which is consistent with the findings in Yuan et al. 2011. In order to 
retrieve size distributions from AODs using PBPSO, multiple retrievals are performed and then a subset of solutions based on 
the criterion  is chosen to find averages and SDOMs of size distribution parameters. 
 
Generally when analyzing atmospheric aerosols, a bimodal or lognormal distribution is preferred. When using the bimodal 
distribution for inferred AODs from clear and foggy days, the uncertainty in the radius for the small aerosols is lower than for the 
large aerosols (Tables 7.1 and 7.2). In addition, the foggy day has smaller  values indicating that the PBPSO algorithm is better 
able to match AODs when there is a larger aerosol load in the atmosphere. To choose whether a bimodal or lognormal 
distribution best characterizes the atmospheric aerosols, both were used with the PBPSO algorithm and the distribution with the 
lowest  was identified. A bimodal distribution best describes the aerosols on the clear day (20160413) and a lognormal 
distribution best describes the aerosols on the foggy day (20160508). 
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PRESS SUMMARY 
The parameter based particle swarm optimization (PBPSO) algorithm is introduced in order to retrieve aerosol size distributions 
from aerosol optical depth calculations without holding any size distribution parameters constant. PBSPO is tested against 
standard sets of aerosol optical depths to determine the reproducibility of results for Junge, gamma, lognormal, and bimodal size 
distributions. The PBPSO algorithm is applied to aerosol optical depth calculated from irradiance measurements from a Kipp-
Zonen PGS-100 solar spectrometer. Results indicate that a lognormal size distribution best describes the aerosols on a foggy day 
(May 8, 2016) and a bimodal distribution best describes the aerosols on a clear day (April 13, 2016). 
 
 


