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ABSTRACT
The formation of blood clots is vital for biological repair of injured blood vessels. When a blood vessel is injured, platelets
come into contact with collagen, causing glycoprotein VI (GPVI) to undergo a conformational change and initialize the
clotting process. This project aimed to simplify and solve a system of coupled ordinary differential equations (ODEs)
proposed in Model A of Regulation of Early Steps of GPVI Signal Transduction by Phosphatase: A Systems Biology Approach
by JL Dunster et al., modeling early platelet activation kinetics. In doing so, the ODEs were non-dimensionalized and the
approximate analytical solutions were then found. The approximate solutions compare favorably to the numerical solutions
and provide deeper insight into the signal regulation pathway. Most notably, the solutions expose a time at which the pathway
dynamics change drastically. This illustrates the critical role of cytosolic spleen tyrosine kinase (Syk) as a molecular timer
in the cascade.
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INTRODUCTION
Blood is composed mostly of plasma, white blood cells, red blood cells, and platelets. Platelets are anuclear, biconcave
discs responsible for the detection and repair of structural damage to the blood vessel wall. The extracellular matrix, ECM,
surrounding blood vessels is composed mainly of collagen. When the blood vessel wall is compromised, the platelets inside
the blood vessels are exposed to the ECM (Figure 1a). The platelets respond to the presence of collagen by initiating a repair
pathway.1 More specifically, the interactions with glycoprotein VI (GPVI), cause the platelet to undergo a conformational
change that initiates the clotting process (Figure 1b). This conformational change starts a signaling cascade that relies heavily
on the phosphorylation of secondary messengers to amplify the signal. This helps to aggregate additional platelets to the
wound, and allows clot formation to occur. Once the clot begins to form, regulatory feedback loops within this signaling
cascade modulate the strength and duration of the signal. Although the forward signaling cascade has been well studied,
little information exists on regulation of the signal. Evidence indicates that as the signaling process occurs, products further
downstream interact with earlier events to regulate and modify the strength and duration of the clotting response.1

The inappropriate activation of clot formation can lead to thrombosis, heart disease, and stroke, all of which are potentially
fatal.3 Developing a model to depict this signaling pathway can lead to a better quantitative understanding of clotting.
Through mathematical modeling, physicians can better detect and target crucial reactions in this pathway. These models
could potentially aide in the development of medication that prevents inappropriate clot formation, making treatment more
effective. In addition, spleen tyrosine kinase, Syk, plays a significant role in immune cell signaling.4 This role may be better
understood though modeling Syk’s dynamics in the context of platelet activation.
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Three models for the initial steps of the signal cascade for platelet activation were developed by Dunster et al.1 Their simplest
model, Model A, proposes seven differential equations correlating to the different steps and participants in the cascade. These
equations are useful in developing a model, but the information obtained from a system of differential equations is limited.
Finding analytic approximations for these equations can provide more insight into the model, such as the concentration of
each component of the cascade at a given point in time.

After highlighting the importance and current understanding of this pathway in section 3, we introduce a model proposed
by Dunster et al. in section 4.1. In section 5.1, these equations are non-dimensionalized to obtain unitless constants that can
be compared directly. We proceeded to simplify and solve the seven differential equations to obtain solutions in section 5.6.
In section 6, we offer conclusions and insights provided by the analytical solutions.

Literature Review
Dunster et al. have used their understanding of the clotting cascade pathway to develop a model of the signaling pathway.1

However, the authors concede that the negative feedback loops are not well understood. Other mathematical models for
platelet signaling tend to focus on signal activation and have been remarkably successful in predicting calcium regulation in
platelets during signal transduction.5 These models typically focus on forward signal transduction while signal regulation
mechanisms remain largely unstudied. These feedback inhibition pathways are crucial for understanding the regulation of
this pathway and the steady state level for phosphorylated spleen tyrosine kinase, Syk. Several potential feedback processes
are considered and incorporated in later, more complex modeling systems by Dunster et al.1 Such a feedback loop was
investigated, with particuar emphasis placed on the question of whether the ligand T-cell ubiquitin ligand-2, TULA-2, is
partially responsible for the regulation of phosphorylated Syk.6 A negative correlation between the concentration of TULA-
2 and activated Syk levels was discovered, in addition to an apparent specificity of TULA-2 for Syk. Not only is TULA-2
suspected to negatively regulate activated Syk, but c-Cbl, a kinase from the Src family that is activated along the clotting
signal cascade may also be involved. Studies have also indicated a potential regulatory role that c-Cbl has on activated Syk.7

These feedback loops are incorporated into the models from the Dunster et al. paper to predict activated Syk concentrations.
The incorporation of these loops is further supported by the key role Src family kinases play in initiating platelet activation.8

The regulatory role of phosphatases can be considered in modulating the cellular response to signaling.9 Phosphatases also
play a regulatory role in the activation of Syk and the maintenance of the clotting signal.

To further support the many checkpoints and feedback loops in this physiological phenomenon, the idea of Syk being
the main checkpoint for this cascade has been studied.10 Knowing that Syk activation is heavily regulated supports the
assumption that Dunster made when focusing on the concentration of activated Syk as an indicator of the clotting signal
progression. The Y525 motif on Syk, which is the location where a tyrosine residue becomes phosphorylated during Syk
activation, is important for regulation and activation.10 ITAM-Syk binding and later Syk activation heavily relies on this
motif. Most of the feedback mechanisms, such as phosphatase dephosphorylation of Syk, depend on protein recognition of
Y525.

The mechanisms behind the GPVI activation are also vital to the understanding of the clotting signaling cascade.2 Dunster
et al.’s mathematical model of platelet activation uses this to explain the high affinity of Syk for ITAM on the GPVI receptor,
leading to Syk strongly binding to the phosphorylated receptor complex. Additional research explores platelet activation
and blood coagulation as complementary processes, illustrating the importance of regulatory processes in ensuring efficient
responses to injury.11

Understanding the complex mechanisms of platelet activation allows for more effective antithrombotic medicines target-
ing the prevention of errant clot formation. Arterial thrombosis is an acute complication that forms on chronic lesions of
atherosclerosis and results in heart attacks and stroke.3 Further exploration of platelet activation will lead to a better under-
standing of the formation and progression of atherosclerotic plaque. As the most common cause of mortality in developed
countries, there are large clinical implications to a deeper understanding of clotting dynamics.1, 3 Beyond atherosclerosis,
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platelet activation contributes to the long-term recovery outcomes of heart transplantation.12 Long-term survivors of heart
transplantation show increased activation of platelets, potentially contributing to increased immune activation and compli-
cations.3 As a component of endothelial dysfunction, the inverse relationship between platelet activation and endothelium-
dependent vasomotor function appears to explain the connection between vasomotor dysfunction and atherothrombotic
events.13 These phenomena, along with other connections between platelet activation and chronic illness, illustrate the
importance of understanding the role of platelet activation.

GOVERNING EQUATIONS
Description of Dunster’s Model A

(a) (b)

Figure 1. (a) Damage to the blood vessel wall exposes platelets to collagen. Other blood vessel components (red blood cells, white blood
cells, etc. have been excluded for simplicity. (b) Exposure of GPVI at the platelet surface to collagen begins the platelet activation cascade
by forming a receptor complex. The receptor complex is then phosphorylated and Syk binds to the complex, activating the receptor and
initiating downstream signaling.

This paper analyzes the intermediates in Model A of the platelet activation signaling pathway developed by Dunster et al.1

Collagen normally exists outside of the blood vessel, but upon damage to the blood vessel, collagen gets exposed to the
bloodstream and platelets (Figure 1a). Collagen or the multivalent GPVI-selective agonist, collagen-related peptide (CRP),
used during the experiments (both denoted as l) exposed to the platelets in the extracellular matrix can then interact with
GPVI at the cell surface. As the ligand reversibly binds to the free GPVI receptor, g, on the cell membrane surface, the
receptor-ligand complex, G, forms. The reverse reaction then involves the dissociation of G back into l and g. Following
the formation of the receptor-ligand complex, it becomes phosphorylated,Gp. This phosphorylation allows for recruitment
and activation of the cytosolic protein-tyrosine kinase, Syk, found inside the platelet cytosol. Syk, denoted s, binds to
the phosphorylated receptor complex, Gp, to form Gb

0. Since GPVI associates with the ITAMs, when Syk aggregates and
interacts with the activated ITAM, its tyrosine 525 residue (Y525) gets phosphorylated (Gb

1 ). This entire process, resulting
in the phosphorylation of Syk, initiates the downstream signaling. The high binding affinity of Syk to the ITAM occurs
through two bound tyrosine residues, resulting in protection of the ITAM from dephosphorylation. The receptor-ligand
complex formation and the phosphorylation of Syk steps are reversible and have the potential for being regulated by outside
enzyme or downstream products. Figure 1b demonstrates the mechanism described above, and Table 1 and Table 2 detail
the variables and parameters involved for this cascade along with the values for each, respectively.

The rate at which each reactant, intermediate, and product in the mechanism shown in Figure 1b is created or consumed can
be modeled by the seven differential equations determined by Dunster et al. (Equations (1a-1g)).1 Equations 1a and 1b are
very similar and measure the rates of ligand and GPVI consumption ( dldt = − k1

VeAv
gl+ k−1

VeAv
G, for l and dg

dt = −k1gl+k−1G

for g). The first term in these equation demonstrates the consumption of l and g through their association to createG while
the second term represents the reverse reaction where G dissociates back into l and g. Because g is fixed to the platelet
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membrane, it can only interact with l when it is close to the membrane. As such, the ligand rate equation, Equation 1a, is
scaled down by the volume of the extracellular matrix (Ve ) so that only the ligand molecules close to the platelet membrane
are accounted for in the equation. Additionally, Equation 1a is divided by Avogadro’s Number (Av ) to convert the mM
units ( molesm3 ) of l to molecules like g.

The first two terms of Equation 1c are the opposite of those in Equations 1a and 1b. These terms represent the same
forward and reverse reaction involving ligand-receptor binding, but presented from the alternate view. The direction that
consumes l and g creates G and the direction that creates l and g consumes G, hence the opposite signs. The final term
in Equation 1c accounts for the rate that G is consumed in the next step of the pathway as it gets phosphorylated to Gp.
Together, these terms outline how quickly G is created at the beginning of the reaction and then consumed in both forward
and reverse reactions ( dGdt = k1gl − k−1G− k2G).

Gp creation depends on G consumption. Hence the first term of Equation 1d ( dG
p

dt = k2G− k3

VpAv
Gps) is the opposite of

the last term of Equation 1c. The dephosphorylation of G is not significantly reversible and so there is no term denoting
the reverse of this reaction. This is due to the speed with which the next step of the pathway occurs. Gp interacts with s

from the cytosol to create Gb
0. This reaction creates the second term in Equation 1d and the rate equation for s, Equation

1e ( dsdt = − k3

VpAv
Gps) which only participates in this reaction within the pathway. Because s exists in the cytosol similarly

to how l exists in the extracellular matrix, this term has to be adjusted to account for the fact that this interaction can only
occur along the membrane. However, since s is cytosolic instead of extracellular, the volume of the platelet (Vp ) is used in
the calculation instead of the external environment. Additionally, the rate constant for this step of the reaction (k3 ) is so
large that the reaction drives forward, consuming Gp as quickly as it is created.

The last two equations represent the final part of this pathway. Gb
0, representing the ligand-bound receptor interacting

with Syk, gets phosphorylated to create Gb
1 which can further initiate downstream signaling. The first term of Equation

1f ( dG
b
0

dt = k3

VpAv
Gps − ρ1G

b
0 + γ1G

b
1 ) shows the irreversible creation of Gb

0 while the last two terms show the forward

and reverse rates of its reversible phosphorylation into Gb
1. Similarly, Equation 1g ( dG

b
1

dt = ρ1G
b
0 − γ1G

b
1 ) shows the same

forward and reverse reactions but in the opposite direction. As such, these two protein forms eventually reach an equilibrium
once all of s is consumed by the previous reaction.

Variable Description Units Initial Value
l Ligand moles

m3 (mM) 3× 10−2

t Time seconds 0
g GPVI molecules 5000

s Cytosolic Syk molecules 2763

G GPVI-Ligand Complex molecules 0

Gp Phosphorylated Receptor molecules 0

Gb
0 Syk-Receptor Complex molecules 0

Gb
1 Syk with Y525 Phosphorylated molecules 0

Table 1. Variables used in the signaling model. Initial concentrations of GPVI and cytosolic Syk were determined with immunoblotting.
During experiments, the collagen-related peptide used as the ligand was always maintained at high saturation levels and so a non-rate
limiting initial value was selected. 1
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Parameter Description Units Value
k1 Rate of Ligand Binding m3

moles·s 8

k−1 Rate of Ligand Dissociation s−1 3.02× 10−2

Ve Extracellular Volume per Cell m3 3.3× 10−9

Vp Platelet Volume m3 7.4× 10−18

k2 Rate of Receptor Phosphorylation s−1 3.02× 10−2

k3 Rate Syk Binds to Receptor s−1 9.55× 105

ρ1 Rate of Syk Phosphorylation s−1 5.13× 10−1

γ1 Rate of Syk Dephosphorylation s−1 3.53

T Experimental Duration s 250

Table 2. Parameters used in the model Equations 1a-1g, and in their non-dimensionalization Equations 2a-2g. k1 and k−1, the rate
constants for ligand association and dissociation, were previously reported. 16 The other rate constants were determined through parameter
fitting using estimates based on the kinetics of similar proteins or of proteins in different cell lines. Platelet volume was determined during
sample collection and the extracellular volume was calculated from there. 1

In summary, the set of ODEs given by Dunster et al.1 to represent the initial steps of platelet activation are below.

dl

dt
= − k1

VeAv
gl +

k−1

VeAv
G Equation 1a.

dg

dt
= −k1gl + k−1G Equation 1b.

dG

dt
= k1gl − k−1G− k2G Equation 1c.

dGp

dt
= k2G− k3

VpAv
Gps Equation 1d.

ds

dt
= − k3

VpAv
Gps Equation 1e.

dGb
0

dt
=

k3
VpAv

Gps− ρ1G
b
0 + γ1G

b
1 Equation 1f.

dGb
1

dt
= ρ1G

b
0 − γ1G

b
1 Equation 1g.

Definitions of all variables and parameters are given in Tables 1 and 2, respectively.

This system of equations can be solved numerically (Figure 2), allowing relative concentrations to be compared visually
throughout the signaling cascade. This approach also shows the approximate times at which different stages of the cascade
are switched on or off and when steady state is reached. Subsequent decomposition and simplification of this system can be
compared to these numerical solutions for validation.

Formulation of Assumptions
The clotting signal cascade is a complex system with a myriad of enzymes, secondary messengers, and ligands that work to
regulate its activation and steady state. This model operates under several assumptions,1 and only considers the activation of
GPVI and the phosphorylation of Syk. The following assumptions impose spatial uniformity on the system, while granting
the ability to describe it via mass action kinetics. Other simplifications made in this model include: no feedback mechanisms,
a single phosphorylation site, all or nothing responses, and single pathway responses. This simplifies the underlying biological
mechanisms of the clotting cascade, but allows us to obtain explicit solutions for all the reactants in the system.
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Figure 2. Numerical Solutions to Signaling Cascade. The solutions to the system of ODEs (Equations 1b through 1g) with initial
conditions and parameters as detailed in Tables 1 and 2. The proteins present during the start of the reaction (g and s) get consumed as
the reaction proceeds and go to 0. The intermediate, G, is initially created, but as the reaction proceeds gets consumed. Gp gets created,
but its reaction with s is so fast that it is immediately converted into Gb

0 which can reversibly be phophorylated into Gb
1. Once all of s is

consumed, no new Gb
0 can be made so Gp begins to accumulate and Gb

0 and Gb
1 reach an equilibrium.

Two important assumptions for ODE formulation are:

Assumption 1: The platelet’s surface area and receptor density is constant.

Justification: Anuclear cells, such as platelets, lack the requisite genetic material for the production of additional cel-
lular components. This holds for the proteins, phospholipids, or cholesterols that would need to be incorporated
into the cellular membrane.

Assumption 2: Cytosolic, membrane, and extracellular components are evenly distributed.

Justification: Rapid diffusion leads to an even dispersal of proteins within the platelet and on its surface. This implies
that spatial variation is irrelevant. Further, the platelet’s conformational change, induced by the cascade, occurs
on a larger timescale than the initial signaling phenomenon of interest.

It is important to note that this model is the most simple model offered by Dunster et al.1 It ignores the feedback mechanisms
and increased biological fidelity of later models.
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MATHEMATICAL APPROXIMATION
Non-Dimensionalization
The system of ODEs is non-dimensionalized. In addition to reducing the number of parameters, this provides a means to
compare the rates of each reaction step of platelet signaling activation, which is shown in Figure 2. This helps to determine
which kinetic steps are relatively fast or slow in comparison to the other steps. Table 3 presents the non-dimensionalized
parameters, variables and their definitions in terms of the original, dimensional parameters.

The dimensionless ODEs are as follows.

dΓ

dτ
= −α̂1ϕΓ + α−1Φ Equation 2a.

dϕ

dτ
= −α̂1ϕΓ + α−1Φ Equation 2b.

dΦ

dτ
= α̂1ϕΓ− α−1Φ− βΦ Equation 2c.

dΦp

dτ
= βΦ− ηΦpσ Equation 2d.

dσ

dτ
= −ηΦpσ Equation 2e.

dΦb
0

dτ
= ηΦpσ − εΦb

0 + θΦb
1 Equation 2f.

dΦb
1

dτ
= εΦb

0 − θΦb
1 Equation 2g.

Variable Definition Initial Value
τ t

T 0

Γ lVeAv

g0
1.2× 1012

ϕ g
g0

1

σ s
g0

0.55

Φ G
g0

0

Φp Gp

g0
0

Φb
0

Gb
0

g0
0

Φb
1

Gb
1

g0
0

(a)

Parameter Definition Value
α̂1

k1Tg0
VeAv

5.03× 10−9

α1 k1T l0 60

α−1 k−1T 8

β k2T 8

η k3

VpAv
Tg0 2.68× 105

ε ρ1T 128

θ γ1T 882

(b)

Table 3. Components of the Non-Dimensional System of ODEs. These tables represent the dimensionless variables (a) and parameters
(b) from Dunster et al. 1 Their corresponding values can be found in Table 1 and Table 2, respectively.

A similar labeling system to the dimensional equations, Equations 1a-1g, is used to allow for easier comparison of the
corresponding equations. The dimensionless equations are presented in the order that the reactions shown in Figure 1
occur. Equations 2a-2g can also be written as a series of chemical reactions. This helps illustrate the approach taken to solve
each step.

Γ + ϕ
α̂1

α−1
Φ

β
Φp

σ

Φb
0

ε

θ
Φb

1η

The above shows a cascade reaction with non-dimensionalized variables. The Ligand (Γ) binds to GPVI (ϕ) to form the
GPVI-Ligand Complex (Φ). The GPVI-Ligand Complex is subsequently phosphorylated (Φp ), allowing Cytosolic Syk (σ)
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to join and form the Syk-Receptor Complex (Φb
0 ). The Syk-Receptor complex exists at steady state both with Tyrosine 525

phosphorylated (Φb
1 ) and without (Φb

0 ).

Analytical Solution for Equation 2a
Numerical integration of the ODEs shows that the ligand concentration is in a pseudo-steady state. After the platelets are
exposed to collagen, the rate of change of the ligand is basically zero for the rest of the cascade, and the concentration of the
ligand is constant during the period of interest.

Therefore, instead of Equation 1a, the ligand variable is held constant at its initial condition, 1.2× 1012molesm3 .

Γ(τ) = Γ0 Equation 3a.

Equation 2b and Equation 2c are modified to account for this, and allow Equation 2a to be removed from the system of
ODEs: Γ is combined with α̂1 to create the α1 parameter, α1 = α̂1Γ0.

Analytical Solutions for Equations 2b and 2c
These Equations describe the formation of the GPVI-Ligand complex:

Γ
Ligand

+ ϕ
GPVI

α̂1

α−1

Φ
GPVI-Ligand .
Complex

In subsequent reactions, Φ is consumed with rate β. With the ligand concentration constant, Equations 2b and 2c form a
closed system. This allows them to be solved exactly by first converting them to matrix form, x′ = Ax:

(
dϕ
dτ
dΦ
dτ

)
=

(
−α1 α−1

α1 −(α−1 + β)

)
×
(

ϕ

Φ

)
. Equation 4.

Finding the eigenvalues and eigenvectors of the matrix above allows an exact, analytical solution to be found (Supplement
A).

It was found that

ϕ(τ) = c1e
λ1τ + c2e

λ2τ , Equation 3b.

Φ(τ) = c3e
λ1τ − c3e

λ2τ , Equation 3c.

where c1 = 0.137, c2 = 0.863, c3 = 0.9698, λ1 = −6.6145, and λ2 = −68.4855.

Analytical Approximations for Equations 2d and 2e
The ODEs for cytosolic Syk and phosphorylated GPVI, produced by a previous reaction, form a coupled system, resulting
in the formation of the Syk-Receptor complex:

σ
Cytosolic

Syk

+ Φp

Phos.
Receptor

η Φb
0

Syk-Receptor .
Complex
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Figure 3. Partitions lending to asymptotic analysis.

The reaction of Syk with phosphorylated GPVI (Equations 2d and 2e) occurs so quickly (with the non-dimensionalized
rate constant, η = 2.68× 105 ) that if two reactants are present together, the reaction moves forward. Because of this driving
force, phosphorylated GPVI is consumed almost as quickly as it is produced and only begins to accumulate once all of the
Syk has reacted. Taking this into account, solutions can be found via asymptotic analysis.

The differential equations can be solved piece-wise with respect to the availability of free σ. The time at which σ is exhausted
is labeled τ∗ (Figure 3).

Analysis for τ < τ∗

Because η is so large, any Syk in solution will consume Φp as soon as it is produced. This assumption has implications for
both dΦp

dτ (Equation 2d) and dσ
dτ (Equation 2e):

(
dΦp

dτ
≈ 0 = βΦ− ηΦpσ

)
=⇒

(
dσ

dτ
= −ηΦpσ ≈ −βΦ

)
. Equation 5.

These assumptions state that changes in σ will be proportional to the value of Φ(τ), solved previously. Therefore, σ(τ) can
be approximated with

σ(τ) = σ0 −
∫ τ

0

βΦ(τ ′)dτ ′, for 0 ≤ τ < τ∗. Equation 6.
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This gives the following partial approximation for σ(τ) and Φp:

σ(τ) =c4e
λ1τ − c5e

λ2τ − c6, Equation 7a.

Φp =0 Equation 7b.

with τ ∈ [0, τ∗), c4 = 1.107, c5 = 0.1069, and c6 = 0.4474.

Analysis for τ ≥ τ∗

As τ reaches τ∗, σ reaches 0 and Φp can begin to grow (Figure 3). This allows a similar, but converse, approach to approxi-
mating Φp and σ:

(
σ(τ) ≈ 0,

dσ

dτ
≈ 0

)
=⇒ dΦp

dτ
= βΦ.

An approximation to Equation 2d can now be found via integration:

Φp(τ) =

∫ τ

τ∗
βΦ(τ ′)dτ ′, for τ∗ ≤ τ ≤ 1. Equation 8.

With an approximation ofΦp, piecewise solutions for σ andΦp can be constructed, with τ ∈ [0, 1], c4 = 1.107, c5 = 0.1069,
and c6 = 0.4474:

Φp(τ) =

{
0 for τ < τ∗

−c4eλ1τ + c5e
λ2τ + c6 for τ ≥ τ∗

Equation 3d.

σ(τ) =

{
c4e

λ1τ − c5e
λ2τ − c6 for τ < τ∗

0 for τ ≥ τ∗,
Equation 3e.

The large size of η is reflected in the high affinity that cytosolic Syk has for the GPVI-ligand complex. Also, since cytosolic
Syk binds quickly and irreversibly to the GPVI complex, it acts as a molecular clock that determines τ∗, which is the time
when cytosolic Syk is fully consumed and the concentration of phosphorylated GPVI can grow.

From these equations, the intersection was used to determine τ∗, determined from:(
lim

τ→τ∗−
σ(τ) =

)
0 =⇒ (τ∗ = 0.137) . Equation 9.

Analytical Approximation for Equations 2f and 2g
These equations define the concentrations of Φb

0 and Φb
1, and involve the reaction rates ε and θ:

Φb
0

Syk-Receptor
Complex

ε

θ
Φb
1

Syk-Receptor Complex
w/ Ph. Y525

The Syk-Receptor complex is also created at rate η as a result of the coupling of cytosolic Syk, σ and the phosphorylated
receptor,Φp. We will now solve for Φb

1(τ) by eliminating Φb
0 from Equations 2f and 2g.
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Analysis for τ < τ∗

The previous section established that, for τ < τ∗, we have ηΦpσ ≈ βΦ. This is used in the first step of finding an analytical
approximation for Φb

1, solving
dΦb

0

dτ (Equation 2f) for Φb
0:

dΦb
0

dτ = βΦ− εΦb
0 + θΦb

1

Φb
0 = 1

ε

(
dΦb

1

dτ + θΦb
1

)
.

Equation 2g*.

After substituting for Φ from Equation 3c, a solution can be found (see Supplemental C for details):

Φb
1(τ) = c7 + c8e

λ1τ + c9e
λ2τ Equation 10.

with the following constants: c7 = 0.126, c8 = −0.141, c9 = 0.0146.

This solution can be substituted into Equation 2g* above, for τ < τ∗. Therefore one has

Φb
0(τ) = c10e

λ1τ + c11e
λ2τ + c12 Equation 11.

with the following τ ∈ [0, τ∗ ), c10 = −0.9628, and c11 = 0.093, c12 = 0.867.

Analysis for τ ≥ τ∗

The steady state values for Φb
0 and Φb

1 are well-approximated by their values at τ∗ (Supplemental C):

Φb
1(τ

∗) = 0.069, Equation 12a.

Φb
0(τ

∗) = 0.478. Equation 12b.

With these components, solutions can be constructed over the whole domain.

Φb
0(τ) =

{
c10e

λ1τ + c11e
λ2τ + c12 if τ < τ∗

0.478 if τ ≥ τ∗
Equation 3f.

Φb
1(τ) =

{
c7 + c8e

λ1τ + c9e
λ2τ if τ < τ∗

0.069 if τ ≥ τ∗
Equation 3g.
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Full Analytical Solutions for Platelet Activation
For the series of reactions (illustrated in Figure 1) the explicit solutions are

Γ(τ) = Γ0, Equation 14a.

ϕ(τ) = c1e
λ1τ + c2e

λ2τ , Equation 14b.

Φ(τ) = c3e
λ1τ − c3e

λ2τ , Equation 14c.

Φp(τ) =

{
0 for τ < τ∗

−c4eλ1τ + c5e
λ2τ + c6 for τ ≥ τ∗

, Equation 14d.

σ(τ) =

{
c4e

λ1τ − c5e
λ2τ − c6 for τ < τ∗

0 for τ ≥ τ∗
, Equation 14e.

Φb
0(τ) =

{
c10e

λ1τ + c11e
λ2τ + c12 for τ < τ∗

0.478 for τ ≥ τ∗
, Equation 14f.

Φb
1(τ) =

{
c7 + c8e

λ1τ + c9e
λ2τ for τ < τ∗

0.069 for τ ≥ τ∗
, Equation 14g.

with λ1 = −6.6145, and λ2 = −68.4855, c1 = 0.137, c2 = 0.863, c3 = 0.9698, c4 = 1.107, c5 = 0.1069, c6 = 0.4474,
c7 = 0.126, c8 = −0.141, c9 = 0.0146, c10 = −0.9628, c11 = 0.093, and c12 = 0.867, and τ∗ = 0.137.

From Figure 4, the analytic solutions compare favorably to the numerical ones.

CONCLUSIONS
The system of ODEs from Dunster et al.’s Model A is simplified by first finding its dimensionless equivalent. This process
allowed different concentrations and rate kinetics to be directly compared. In addition, the approximate analytical solutions
for all the ODEs were found. These solutions are more accessible than the coupled system of differential equations, and each
component can now be viewed separately.

Equation 14a shows that the ligand concentration is held constant at its initial value. This is permissible since the right hand
side of Equation 2a, the ligand ODE, reaches zero shortly after time zero. It also shows the extent to which phosphorylated
Syk functions as a biological clock. When t is equal to approximately 34 seconds, cytosolic Syk is depleted and allows the
signal cascade to reach a pseudo steady-state.

The asymptotic, approximate analytic solutions favorably compare to Dunster et al.’s numerical solutions. They maintain
its accuracy and scope while providing solutions that are explicit and easier to understand. Further, the underlying biology
is more readily exposed; τ∗, the effective phosphorylation time scale, marks a clear threshold in the cascade.

The timing mechanism, especially, is shown by the distinct changes in concentrations seen in Figure 4. At τ∗, the effective
phosphorylation time scale, there is a switch in qualitative behavior for many of the reactants. This is the time that it takes
for several of the reactants, bound, phosphorylated, and cytosolic Syk, to reach steady state. These steady state levels then
feed into subsequent downstream reactions that are not described in this simplified model. The explicit solutions indicate a
coordinated timing mechanism that either activates or deactivates complexes within this cascade.

The experimental data, to which Dunster et al.’s models were parameterized, indicates an overshoot and subsequent under-
shoot of phosphorylated Syk at τ∗. This often arises in systems featuring strong feedback mechanisms.17 In fact, Dunster et
al. offers models of increasing complexity that more accurately capture this phenomenon.1 This is accomplished by intro-
ducing more granularity to the phosphorylation of cytosolic Syk on Y525, and an additional phosphorylation site on Y323.
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Figure 4. Approximate analytical solutions for the ODEs, ϕ(τ), Φ(τ), σ(τ), Φp(τ), Φb
1(τ), and Φb

0(τ), with respect to time. The
dimensionless versions of Dunster et al.’s ODEs for the GPVI (ϕ), the GPVI complex (Φ), phosphorylated GPVI (Φp ), and the cytosolic
Syk (σ) were solved to create functions dependent on time. The dotted lines represent the numerical solutions from Dunster et al. while
the solid lines are the analytical solutions. Cytosolic Syk serves as a molecular clock, marking the timescale of effective phosphorylation.
Its depletion at τ∗ correlates to a dramatic change in the cascade’s dynamics.

However, these models do not include additional steps in the platelet’s activation cascade. An interesting extension to this
work would be to use our analytic approximations for the ligand, GPVI, and Syk (Equations 14a-14e) as inputs to more
complicated models of platelet activation, such as Models B and C of Dunster et al.1
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SUPPLEMENT A: ANALYTICAL SOLUTIONS FOR φ AND Φ

The equations for φ and Φ can be solved as an independent system, separate from the other ODEs.

dϕ

dτ
=− α1ϕ+ α−1Φ Equation 15a.

dΦ

dτ
=α1ϕ− α−1Φ− βΦ Equation 15b.

In matrix form, x′ = Ax: (
dϕ
dτ
dΦ
dτ

)
=

(
−α1 α−1

α1 −(α−1 + β)

)
×
(

ϕ

Φ

)
. Equation 16.

Solving for the eigenvalues of A yields the approximate solutions: λ1 = −6.6145, λ2 = −68.4855, with corresponding
eigenvectors:

v1 =

(
0.14003

0.99015

)
,v2 =

(
−0.66473
0.74709

)
. Equation 17.

Therefore, solutions have the form: (
ϕ

Φ

)
= d1v1e

λ1τ + d2v2e
λ2τ . Equation 18.

d1 and d2 can be found by solving at the initial conditions ϕ(0) = 1 and Φ(0) = 0.

1 ≈ 0.14003d1 − 0.66473d2
0 ≈ 0.99015d1 + 0.74709d2

d1 ≈ 0.97941

d2 ≈ −1.29806
Therefore, the solutions for ϕ and Φ are.

ϕ ≈ 0.13715e−6.6145τ + 0.86285e−68.4854τ

Φ ≈ 0.96976e−6.6145τ − 0.96976e−68.4854τ .

SUPPLEMENT B: ANALYTICAL SOLUTIONS FOR ΦP AND σ

Approximate analytical solutions can be found for Φp and σ via asymptotic analysis.

Because η is so large, any Syk in solution will consume Φp as soon as it is produced. τ∗ denotes the time when σ reaches zero
and Φp can begin to grow. This allows Φp and σ to be defined piece-wise with respect to τ∗ and allow approximate solutions
to be obtained.

σ(τ) =

{
σ0 −

∫ τ

0
βΦ(τ ′)dτ ′ if 0 ≤ τ < τ∗

0 if τ∗ ≤ τ ≤ 1
Equation 19.

Φp(τ) =

{
0 if 0 ≤ τ < τ∗∫ τ

τ∗ βΦ(τ
′)dτ ′ if τ∗ ≤ τ ≤ 1

Equation 20.

The value of τ∗ can be found by solving σ(τ∗) = 0.

0 =σ0 −
∫ τ∗

0

βΦ(τ ′)dτ ′

=0.5526−
∫ τ∗

0

7.55(0.9698e−6.6145τ ′ − 0.9698e−68.4855τ )dτ ′

=⇒ −0.4474 =− 1.107e−6.6145τ∗ + 0.1069e−68.4855τ∗

=⇒ τ∗ =0.137
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a particular solution to Φb
1 can be assumed to take the form:

Φb
1(τ) = Ae−6.6145τ +Be−68.4855τ . Equation 22.

Substituting into Equation A2 and comparing coefficients resulted in the following solutions of A and B:

A = −0.141 Equation 23.

B = 0.0146 Equation 24.

Now, the solution to the differential equation is a combination of the homogeneous solution and the particular solution.

Φb
1 = f1 + f2e

−1010.75τ − 0.141e−6.6145τ + 0.0146e−68.4855τ Equation 25.

Solutions for the constants are found by taking the derivative and using the initial values of Φb
1(τ) and

dΦb
1

dτ .

f1 =0.126 Equation 26.

f2 =6.629× 10−5 Equation 27.

The final solution is:

Φb
1(τ) = 0.126− 6.629× 10−5e−1010.25τ − 0.141e−6.6145τ + 0.0146e−68.4855τ Equation 28.

The above solution is only accurate when 0 ≤ τ < τ∗. To determine the steady state value, the equation must be evaluated
at τ = τ∗, where τ∗ = 0.137.

Φb
1(τ

∗) = 0.126− 6.629× 10−5e−1010.25τ∗ − 0.141e−6.6145τ∗ + 0.0146e−68.4855τ∗ Equation 29.

= 0.069 Equation 30.

Equation 31.

The final equation for Φb
1(τ) is as follows.

Φb
1(τ) =

{
0.126− 6.629× 10−5e−1010.75τ − 0.141e−6.6145τ + 0.0146e−68.4855τ if 0 ≤ τ < τ∗

0.069 if τ∗ ≤ τ ≤ 1
Equation 32.

Next, an analytical approximation for Φb
0 is determined from the original equation, Equation 2g. Since Φb

1, is now known,
Φb

0 can be solved by substituting the solution for Φb
1 into Equation 2g*.

Φb
0 =

1

ε

(
d

dτ
Φb

1 + θΦb
1

)
Equation 2g*.

Solving for Φb
0 when τ∗ = 0.137

Φb
0(0.137) = −0.9628e−0.9062 + 0.093e−9.383 + 6.629× 10−5e−138.49 + 0.00272e−17.57 + 0.867 Equation 33.

Φb
0(τ

∗) = 0.478 Equation 34.

The final equation comes out to be:

Φb
0(τ) =

⎧⎪⎪⎨
⎪⎪⎩
−0.9628e−6.6145τ + 0.093e−68.4855τ + 6.629× 10−5e−1010.75τ + 0.00272e−128.25τ + 0.867

if 0 ≤ τ < τ∗

0.478 if τ∗ ≤ τ ≤ 1

Equation 35.
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Note: Both Φb
0 and Φb

1 include an e−1010.75τ term that does not contribute significantly to the solution. Removing this term
from both equations simplifies them to:

Φb
1(τ) =

{
0.126− 0.141e−6.6145τ + 0.0146e−68.4855τ if τ ≤ τ∗

0.069 if τ > τ∗
Equation 36.

Φb
0(τ) =

{
−0.9628e−6.6145τ + 0.093e−68.4855τ + 0.00272e−128.25τ + 0.867 if 0 ≤ τ < τ∗

0.478 if τ∗ ≤ τ ≤ 1
Equation 37.
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PRESS SUMMARY
The ordinary differential equations proposed in Model A of Regulation of Early Steps of GPVI Signal Transduction by Phos-
phatase: A Systems Biology Approach by JL Dunster were simplified through the process of non-dimensionalization. The
approximated analytical solutions were found and compared against the numerical solutions. With this simplification, a
cross comparison for activation kinetics in this phenomenon was performed, allowing for a better understanding of the
signal regulation pathway specifically, thereby exposing an effective phosphorylation time scale of about 34 seconds.


