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ABSTRACT
It is often the case when assessing the goodness of fit for an ARMA time series model that a portmanteau test of the
residuals is conducted to assess residual serial correlation of the fitted ARMA model. Of the many portmanteau tests
available for this purpose, one of the most famous and widely used is a variant of the original Box-Pierce test, the Ljung-
Box test. Despite the popularity of this test, however, there are several other more modern portmanteau tests available
to assess residual serial autocorrelation of the fitted ARMA model. These include two portmanteau tests proposed by
Monti and Peña and Rodríguez. This paper focuses on the results of a power analysis comparing these three different
portmanteau tests against different fits of ARMA - derived time series, as well as the behavior of the three different test-
statistics examined when applied to a real-world data set. We confirm that for situations in which the moving average
component of a fitted ARMA model is underestimated or when the sample size is small, the portmanteau test proposed
by Monti is a viable alternative to the Ljung-Box test. We show new evidence that the Peña and Rodríguez test may
also be a viable option for testing for residual autocorrelation in cases where the sample size is small.
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INTRODUCTION
In many situations in statistics, data used for statistical modeling is required to obey the assumption of independence,
as is often the case in variants of regression analysis and analysis of variance. However, there are endless examples of
real-world scenarios where such an assumption is invalid and the data display autocorrelation with respect to time, such
as in financial and agricultural data. This is often the case in time series, which are defined by data being collected pe-
riodically over time, and we may denote one as Yt for t = 1, ..., T where T is the total number of observations of the
time series.1 In the case where the data is quite simple in structure and seasonal variations are not present, it suffices
to model autocorrelated data with an autoregressive-moving average model (denoted as ARMA(p, q) where p and q are
the orders of the autoregressive and moving average components of the fitted ARMA model respectively) which can be
written as:2

Yt =

p∑
j=1

φjYt−j +

q∑
k=1

θket−k + et Equation 1.

Where et denotes the errors of the fitted ARMA model and φ1, ..., φp and θ1, ..., θq are the corresponding parameters
which are estimated using Conditional Least Squares, Method of Moments, or Maximum Likelihood methods.1, 2
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When fitting the above data, we require that 1) the error terms et be independent and identically distributed Gaussian
white noise terms (e.g., normally distributed with mean 0 and variance σ2 ), and 2) weak stationarity of the time series
Yt.2 It is this first assumption which we will be assessing in our power analysis.

Note that, in theory, the goodness of fit for a particular ARMA model fit to a time series Yt can be assessed by the va-
lidity of the first assumption. If the ARMA model is a sufficient fit for the time series, then it will take into account all
serial autocorrelation present in the data, including autocorrelation of the data to its own past values and any current
and past values of the stochastic term et.1

Much of this paper aims to confirm the findings of Safi and Al-Reqep’s research on the power of portmanteau tests.3

In this paper, we additionally seek to provide evidence that the Peña and Rodríguez test for residual autocorrelation is
suitable for small sample sizes. We will now present three autocorrelation tests which assess this lack of fit.

METHODS AND PROCEDURES
Autocorrelation Tests for ARMA Models.
Autocorrelation is tested for using portmanteau tests as they are powerful for detecting deviations from independence.
Each of the following portmanteau tests described in this paper test the lack of fit of an ARMA model by measuring
the residual autocorrelation present after fitting the model to the time series data. Furthermore, the null and alternative
hypothesis for each of the following tests can be written as follows:4, 6, 7

H0 : The errors of the fitted ARMA model are independently distributed

HA : The errors of the fitted ARMA model are not independent; they display serial autocorrelation

Arguably the most popular of the three different portmanteau tests examined for this power analysis is the Ljung-Box
test. The test statistic for the Ljung-Box test is:4

Q = n(n+ 2)

h∑
k=1

r2k
n− k

Equation 2.

Here, n denotes the sample size, h is the number of lags being tested, and rk is the residual autocorrelation at lag k.
Ljung and Box showed that for residuals derived from a fitted ARMA(p, q) model, Q is asymptotically distributed as
χ2 with h - p - q degrees of freedom.4

A similar test was proposed by Monti, and is quite similar to the Ljung-Box test statistic, although the residual autocor-
relation at lag k is replaced by the residual partial autocorrelation at lag k. The test statistic for the portmanteau test
proposed by Monti can be denoted as:6

M = n(n+ 2)

h∑
k=1

π2
k

n− k
Equation 3.

Here, n denotes the sample size, h is the number of lags being tested, and πk is the residual partial autocorrelation at
lag k. Monti showed that for residuals derived from a fitted ARMA(p, q) model, M is asymptotically distributed as χ2

with h - p - q degrees of freedom.6

The last test being examined in this paper is one which was proposed in Peña and Rodríguez. The test statistic for this
portmanteau test, which follows the same null and alternative hypotheses specified above, can be written as:7
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Dm = n[1− |Rm|1/m] Equation 4.

Where n is the sample size. Here, Rm refers to the residual correlation matrix of dimension m, which can be written
as:

Rm =

∣∣∣∣∣∣∣∣∣∣

1 r1 · · · rm
r1 1 · · · rm−1

...
...

. . .
...

rm rm−1 · · · 1

∣∣∣∣∣∣∣∣∣∣
Equation 5.

Where rm is the residual autocorrelation at lag m. Peña and Rodríguez showed that for relatively large sample sizes,
Dm is approximately distributed as Gamma with mean (m+1)/2−(p+q) and variance (2m+1)(m+1)/3m−2(p+q).7

Keeping these three different tests in mind, we will now briefly define power for a binary hypothesis test, and how an
estimate for the power of each of the above tests can be derived via Monte Carlo simulation. Then, we will move on to
the execution and results of the power analysis.

Power for a Binary Hypothesis Test.
Recall the hypotheses being tested by the above portmanteau tests (see Introduction), and let λ denote the power of the
above test against the alternative hypothesis HA. Then we can define the power of the above hypothesis test as:

λ = P (Reject H0|HA is true) Equation 6.

One problem that this paper seeks to address is the derivation of an estimate for λ for each of the above portmanteau
tests. A reasonable method of achieving such an estimate is to model the probability of the portmanteau test rejecting
the null hypothesis H0 given the alternative hypothesis HA is true by a Bernoulli distribution (and thus, the simulation
of such trials as a Bernoulli process).

Hence, if one simulates n time series derived from an ARMA(p, q) process and models the simulated time series us-
ing an ARMA(p*, q*) model (such that the ARMA(p*, q*) model is an underfit of the ARMA(p, q) process), then the
power of each of the above portmanteau tests can be estimated by calculating the proportion of times that the test cor-
rectly rejects the null hypothesis H0 for the underfitted model.1 Let Xi equal 1 if the ith application of the portman-
teau test correctly classifies the ARMA(p*, q*) model as an underfit, and 0 otherwise. Then a reasonable estimate for λ
would be:

λ̂ =

n∑
i=1

Xi

n
Equation 7.

Hence, the sampled Xi are independently and identically distributed random variables such that:

Xi =

{
1 w/ probability λ

0 w/ probability 1− λ
Equation 8.
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Note that the above estimation is valid only for modeling the derived ARMA(p, q) process with an underfitting model.
Therefore, we must know that the alternative hypothesis is true, else we would not obtain a valid estimate of the port-
manteau test’s power. This is because a model which is a proper fit (or even a model which suffers from overfitting) for
the derived ARMA(p, q) process would theoretically be able to sufficiently model all serial autocorrelation present in
the data, causing the p-value of the corresponding portmanteau test to inflate and thereby making it less likely that we
would reject H0.1 Therefore, this condition is required to be satisfied if we are to obtain an accurate estimate of λ.

Execution of Power Analysis in R.
The execution of the power analysis in R consisted of using a custom built R function which allowed for the simula-
tion of an ARMA(p, q) process with specified length and model fit.

The methods employed in the power analysis were as follows. The Ljung-Box, Monti, and Peña and Rodríguez port-
manteau tests were conducted on either White Noise, AR(1), or MA(1) fits. These models were fitted against an ARMA(p,
q) derived process with specified length and parameters which were generated randomly according to a uniform distri-
bution U(−1, 1) for each combination of N and k. These are shown in the corresponding tables below in Results. For
this simulation study, only AR(2), MA(2) and ARMA(1, 1) derived processes were considered. Sample sizes N = 30,
100, 300 were used in this simulation as the goal was to investigate small to moderate sample sizes. Number of lags k
= 5, 10, 15 were investigated as Safi and Al-Reqep showed that high number of lags resulted in a decrease in power.3

Furthermore, 10,000 replications were used for each simulated process in order to achieve an estimate for the power of
the corresponding portmanteau test accurate to four significant digits and also for the purpose of improving upon the
accuracy from Safi and Al-Reqep’s study.3 Such power estimates were calculated using the theoretical approach outlined
above in Methods and Procedures and generally align with the methods from Safi and Al-Reqep’s simulation study.3 All
models were fitted to the corresponding derived ARMA(p, q) process using a Conditional Sum of Squares - Maximum
Likelihood approach. This method is very similar to the power analysis conducted by Fisher, Monti, and Peña and Ro-
dríguez.1, 6, 7

RESULTS
Power Analysis.
Below are the results of the power analysis for the derived AR(2), MA(2), and ARMA(1, 1) processes. Note that in
Tables 1, 2, and 3 (displayed below), N denotes the length of the derived process, k denotes the number of lags used
to calculate the test statistics of the three portmanteau tests, φ1, φ2, θ1, and θ2 denote the parameters of the derived
ARMA(p, q) process, and λ̂Dm

, λ̂M , and λ̂Q denote the corresponding estimates for the power of the Peña and Ro-
dríguez, Monti, and Ljung-Box tests.

Model Fit N k φ1 φ2 θ1 θ2 λ̂Dm λ̂M λ̂Q

White Noise 30 5 .1860 N/A .8632 N/A .9471 .9446 .7096
AR(1) 30 5 .1860 N/A .8632 N/A .6437 .6140 .3955
MA(1) 30 5 .1860 N/A .8632 N/A .1116 .1032 .1079
White Noise 100 10 -.6639 N/A .1716 N/A .9936 .9811 .9873
AR(1) 100 10 -.6639 N/A .1716 N/A .0613 .0686 .0688
MA(1) 100 10 -.6639 N/A .1716 N/A .7051 .5755 .6488
White Noise 300 15 -.1472 N/A .3672 N/A .8286 .6452 .6015
AR(1) 300 15 -.1472 N/A .3672 N/A .1499 .1119 .1183
MA(1) 300 15 -.1472 N/A .3672 N/A .0644 .0662 .0689

Table 1. Power Analysis Results for ARMA(1,1) Derived Process



American Journal of Undergraduate Research www.ajuronline.org

 Volume 16 | Issue 3 | December 2019  63

Model Fit N k φ1 φ2 θ1 θ2 λ̂Dm λ̂M λ̂Q

White Noise 30 5 N/A N/A .8632 -.4690 .3046 .4092 .2278
AR(1) 30 5 N/A N/A .8632 -.4690 .3826 .3897 .2776
MA(1) 30 5 N/A N/A .8632 -.4690 .1994 .1907 .1217
White Noise 100 10 N/A N/A .1716 .2125 .4154 .3355 .3811
AR(1) 100 10 N/A N/A .1716 .2125 .2000 .1677 .1740
MA(1) 100 10 N/A N/A .1716 .2125 .2746 .2125 .2070
White Noise 300 15 N/A N/A .3672 -.1208 1.0000 .9997 .9899
AR(1) 300 15 N/A N/A .3672 -.1208 .9225 .7865 .7157
MA(1) 300 15 N/A N/A .3672 -.1208 .3115 .2101 .2100

Table 2. Power Analysis Results for MA(2) Derived Process

Model Fit N k φ1 φ2 θ1 θ2 λ̂Dm λ̂M λ̂Q

White Noise 30 5 .1860 -.6302 N/A N/A .7572 .7782 .7890
AR(1) 30 5 .1860 -.6302 N/A N/A .8718 .8334 .8344
MA(1) 30 5 .1860 -.6302 N/A N/A .7713 .7326 .6032
White Noise 100 10 -.6639 -.5996 N/A N/A 1.0000 1.0000 .9999
AR(1) 100 10 -.6639 -.5996 N/A N/A .9998 .9976 .9979
MA(1) 100 10 -.6639 -.5996 N/A N/A .9319 .8811 .8949
White Noise 300 15 -.1472 -.3845 N/A N/A 1.0000 .9992 .9991
AR(1) 300 15 -.1472 -.3845 N/A N/A .9999 .9985 .9984
MA(1) 300 15 -.1472 -.3845 N/A N/A .9994 .9950 .9934

Table 3. Power Analysis Results for AR(2) Derived Process

We can see from the above that the portmanteau test proposed by Monti had an estimated power better than or simi-
lar to that of the Ljung-Box test on several occasions, the most notable of these being when either the moving average
component of the derived ARMA(p, q) process was underestimated or when the sample size and lag used for testing
was sufficiently small (e.g., N = 30 and k = 5, respectively). These results agree with those obtained by Monti.6

Furthermore, in 7 out of the 9 cases in which the derived ARMA(p, q) process had a large sample size and lag used for
testing was high (e.g., N = 300 and k = 15), the results of the power analysis for the portmanteau test suggested by
Monti continued to outperform that of the Ljung-Box test.

The results of the power analysis for the Ljung-Box test meanwhile, were quite mixed. Although the Ljung-Box test
tended to have an estimated power greater than than that of Monti’s portmanteau test for occasions when the number
of lags used for testing and the sample size of the derived ARMA(p, q) process was moderately large (e.g., N = 100
and k = 10), the Ljung-Box test was almost always outperformed by Peña and Rodríguez’s portmanteau test, regardless
of sample size, number of lags used for testing, or type of derived process. Indeed, in 24 of the 27 simulations ran for
the power analysis, the portmanteau test suggested by Peña and Rodríguez had an estimated power greater than that of
the Ljung-Box test.

However, the results seen in the performance of the portmanteau test suggested by Peña and Rodríguez compared to
that of the Ljung-Box test are not surprising for the sample sizes which were greater than or equal to 100, and further
support the results originally obtained by Peña and Rodríguez.7 What should be noted though, is that in 6 of the 9
cases tested in which the derived ARMA(p, q) process had a small sample size and the number of lags used for test-
ing was also small (e.g., N = 30 and k = 5), the portmanteau test proposed by Peña and Rodríguez outperformed the
other two portmanteau tests (e.g., had greater estimated power).
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Applied example: Sheep.
In order to show the results of the power analysis in an applied context, we performed a time series analysis of a real
data set. The data set, Sheep, is of the total annual sheep population (1000s) in England and Wales from 1867 to 1939
(N = 73).8 Firstly, an initial visual inspection of the time series was performed in order to address the requirement of
weak stationarity prior to fitting any ARMA models to the data.

Figure 1. Sheep data visualization. The top graph shows a time series plot of the data which exhibits a negative linear trend and the bottom graph shows
the differenced time series which appears to be stationary.

The time series plot of the data shows a general decreasing linear mean trend. Hence, the data was stationarized in or-
der to satisfy the assumptions of fitting an ARMA(p, q) model to the time series. It is clear from the second plot that
we successfully stationarized the sheep data by taking the first difference of the time series. We can now safely exam-
ine the autocorrelation function (ACF) and partial autocorrelation function (PACF) in order to conduct ARMA(p, q)
modeling of the differenced data.

Judging from the plots of the ACF and PACF in Figure 2, an AR(2) model was found to be the most likely candidate
for modeling the differenced time series as a higher order AR model would likely be an overfit of the data. From the
power analysis, it was found that for moderately large sample sizes (e.g., N ≥ 100), the Peña and Rodríguez test often
has greater statistical power compared to the Monti and Ljung-Box tests. Therefore, we expected that the portmanteau
test proposed by Peña and Rodríguez would be the most conservative in testing for residual autocorrelation of fitted
ARMA models to the differenced Sheep data (likely followed by the Ljung-Box test and Monti’s portmanteau test).

Table 4 shows the estimated coefficients for each of the ARMA models fit to the differenced Sheep time series data. The
Akaike Information Criterion (AIC) is included to give an idea of the goodness of fit for each model relative to that of
the others.5 A smaller AIC value indicates a better fit. It can be noted that the ARMA(2,1) model has the lowest AIC
out of all of the models considered and therefore is the model (out of the subset of ARMA fits considered) which best
fits the differenced Sheep time series. Note that the white noise model has the highest AIC of all the ARMA models
considered and therefore is the model which has the worst relative fit to the data.
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Figure 2. Residual Autocorrelation Analysis of Differenced Sheep Time Series Data.

Model Fit φ̂1 φ̂2 θ̂1 AIC
AR(1) .3734 N/A N/A 832.71
MA(1) N/A N/A .4798 828.83
AR(2) .5348 -.3873 N/A 824.82
ARMA(1,1) .0671 N/A .4267 830.75
ARMA(2,1) .9150 -.5454 -.4553 822.70
White Noise N/A N/A N/A 841.12

Table 4. Results of Sheep data model fits.

For this example, we considered three types of models: "good" models (models of adequate fit, which we will define as
those below the 50th percentile of AIC scores i.e. ARMA(2,1), AR(2), and MA(1)), "not so good" models (models of
obvious underfit, which we will define as those above the 50th percentile of AIC scores i.e. ARMA(1,1) and AR(1)),
and White Noise models (e.g., models of a Gaussian stochastic process).

Model Fit p∗
Dm

p∗
M p∗

Q Overall Conclusion
AR(1) .0123 .0637 .0168 Inconclusive
MA(1) .0630 .1769 .1776 No Residual Autocorrelation Detected
AR(2) .1548 .4670 .5120 No Residual Autocorrelation Detected
ARMA(1,1) .0193 .1244 .1313 Inconclusive
ARMA(2,1) .4560 .6759 .7042 No Residual Autocorrelation Detected
White Noise .0004 .0040 .0001 Residual Autocorrelation Detected

Table 5. Results of Portmanteau Tests of Sheep Data Models.

Table 5 shows the p-values corresponding to each of the portmanteau tests considered against each of the ARMA mod-
els applied to the differenced Sheep time series data. It was found that for the AR(1) model, at a significance level of 5%
and specified number of lags set to 10, Peña and Rodríguez’s portmanteau test and the Ljung-Box test both detected sig-
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nificant residual autocorrelation in the fitted model while the portmanteau test suggested by Monti failed to detect any
significant residual autocorrelation.

Furthermore, it was found that for the MA(1), AR(2), and ARMA(2,1) models, at a significance level of 5% and spec-
ified number of lags set to 10, all of the portmanteau tests failed to detect any significant residual autocorrelation for
these fitted models. The ARMA(2,1) model was found to be one of the "good" models for the fitted data, so as ex-
pected, none of the portmanteau tests found any significant residual autocorrelation for this model.

Additionally, for the ARMA(1,1) model, at a significance level of 5% and specified number of lags set to 10, the port-
manteau test suggested by Peña and Rodríguez resulted in the rejection of the null hypothesis and therefore detected
significant residual autocorrelation in the fitted ARMA model, while the rest of the portmanteau tests failed to detect
any significant residual autocorrelation.

Lastly, the white noise model, at a significance level of 5% and specified number of lags set to 10, was found to have
significant residual autocorrelation present by all three portmanteau tests. This was expected as the results from Table 3
showed all of the portmanteau tests have high estimated power for testing underfitting white noise models.

DISCUSSION
From the power analysis, it was found that Monti’s portmanteau test had an estimated power better than or similar to
that of the Ljung-Box test when either the moving average component of the derived ARMA(p, q) process was underes-
timated or when the sample size (and lag used for testing) were sufficiently small. These results support those originally
obtained by Monti and those by Safi and Al-Reqep.3, 6 Even for higher sample sizes and increased lag, Monti’s port-
manteau test continued to fare better than that of the Ljung-Box test.

Meanwhile, the estimated power for the Ljung-Box test compared to that of Peña and Rodríguez’s portmanteau test was
quite poor, and had an estimated power greater than Peña and Rodríguez’s portmanteau test in only 3 of the 27 simu-
lations conducted. For large sample sizes, Peña and Rodríguez found similar results,7 but our power analysis demon-
strated that Peña and Rodríguez’s portmanteau test still had sufficiently high estimated power for a majority of the
cases where the sample size (and number of lags used for testing) was small. This expands upon the findings of Safi and
Al-Reqep as their paper does not discuss Peña and Rodríguez’s original test statistic as a viable option in this situation.3

These results are quite surprising, as Peña and Rodríguez showed that the approximate convergence of their Dm test
statistic to the Gamma distribution with mean (m + 1)/2 − (p + q) and variance (2m + 1)(m + 1)/3m − 2(p + q) is
quite slow and often lacking in power for small sample sizes.7 These results challenge that idea, as although Peña and
Rodríguez’s portmanteau test was shown to suffer from reduced power on a few occasions in which the sample size
was small, the estimated power of Peña and Rodríguez’s portmanteau test was still close to that of the portmanteau
test suggested by Monti (which in turned fared better than the Ljung-Box test for 6 of the 9 simulations in which the
sample size and lag used for testing was small).

CONCLUSIONS
In summary, our results confirm that the portmanteau test proposed by Monti is a viable alternative to the Ljung-Box
test for when either the moving average component of the fitted ARMA model is underestimated or when sample size
is small. However, for time series with small to moderate sample sizes, the portmanteau test proposed by Peña and Ro-
dríguez may be considered, as this portmanteau test performed well for all sample sizes examined.

Furthermore, the time series analysis of the Sheep data supports the results found in our initial power analysis of the
portmanteau tests considered in this paper, and this is evident in the results of the goodness of fit tests performed on
the ARMA(p, q) models fit to the data. We can see that for when a possible moving average component was under-
estimated, Monti’s portmanteau test was more conservative, and overall, gave results similar to that of the Ljung-Box
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test, while Peña and Rodríguez’s portmanteau test was the most conservative with regards to all of the non white-noise
model fits (see Table 5 above). Moreover, we provide evidence that the original test statistic proposed by Peña and Ro-
dríguez may be suitable for sample sizes as small as 30, contradicting the initial findings of Peña and Rodríguez as well
as Safi and Al-Reqep.3, 7

Future work regarding this subject matter should investigate further applications of the portmanteau tests considered in
this study. Furthermore, the theory of these portmanteau tests extends to testing for conditional heteroscedasticity in
raw time series data (e.g., checking for the presence of GARCH effects in an otherwise stochastic time series process).
There seems to be very little statistical literature regarding applying Monti’s and Peña and Rodríguez’s portmanteau
tests to this task.
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PRESS SUMMARY
When modeling autocorrelated data such as time series, it is often required to check how well the model describes the
data. One such way to do this is to apply statistical tests called portmanteau tests. Our paper compares the statistical
power, or the proportion of times a statistical test correctly rejects a null assumption, for three different portmanteau
tests. We show that there is noticeable improvement in statistical power for two more modern portmanteau tests com-
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