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ABSTRACT

Organoboron compounds are extensively used in organic synthesis. The alkenylboronic acid pinacol esters formed from the
hydroboration reaction of alkynes with pinacolborane are stable, easy to handle, and useful in many synthetic transformations.
However, pinacolborane lacks the reactivity necessary to undergo facile hydroboration reaction with terminal aromatic alkynes. 9-
Borobicyclo[3.3.1]nonane (9-BBN) can be used to catalyze the hydroboration reaction of phenylacetylene with pinacolborane.
The hydroboration reaction parameters and product purification conditions were evaluated to maximize the yield of (E)-2-
phenylethenylboronic acid pinacol ester. It was found that the optimal reaction conditions for the 9-BBN-catalyzed hydroboration
of phenylacetylene with pinacolborane were: phenylacetylene (1.0 equiv), pinacolborane (1.2 equiv), 9-BBN (20 mol%), and THF
[0.2] at 65 °C. The compatibility of these reaction conditions with p-substituted terminal aromatic alkynes bearing electronically
diverse groups was studied. Moderate to good yield (49—76%) of the hydroboration products were isolated after purification by
liquid-liquid extraction and flash chromatography.
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INTRODUCTION

Boron containing organic compounds are useful reagents in the synthesis of important carbon-containing medicines, materials,
and fine chemicals. The utility of these reagents is evident from the variety of bonds, and therefore functional groups, which can
be substituted for the C—B bond. For example, the hydroboration-oxidation reaction of an alkene ultimately transforms the C-B
bond into a C—O bond.! The C-B bond can be substituted for a C—H bond by protonolysis,? or a C—X bond by halogenation.? In
addition, the use of transition-metal catalysis has allowed for the substitution of a C-B bond for a C-C,4 567 C-H,% 9 C-N,10. 11,12,
13,14 C-0O,15,16,17 C-P 1819 or C-S bond,?% 2! and include asymmetric vatiants.??

The hydroboration reaction of unsaturated organic substrates with hydroboron reagents is a straight-forward method to prepare
alkyl- and alkenylboron compounds. An early example of the hydroboration reaction of alkenes was reported by Brown in 1956.5
2 In 1966, Woods and Strong reported that alkynes undergo sluggish hydroboration with 4,4,6-trimethyl-1,3,2-dioxaborinane in a
sealed tube of superheated ether to provide the alkenylboron products in low yield.?* Chemists have sought to catalyze the
hydroboration reaction with transition metals,?5 26,27 28,29,30,31, 32 4 nd alkaline earth metals,33 3% aluminum,3% 353637 base 3839 N, N-
dimethylacetamide,* and benzoic acid derivatives.*: 42 Boron reagents are also known to catalyze the hydroboration reaction.3 44
45,46,47,48 Tn 1990, Periasamy ez al. reported that a BH3*IN,N-diethylaniline complex could catalyze the hydroboration of terminal
alkynes with catecholborane.®3 Hoshi e a/. later reported that dicyclohexylborane could catalyze the hydroboration reaction of
terminal alkynes with pinacolborane in good to excellent yield.*

Our interest in the hydroboration reaction originated with the need to synthesize (I5)-2-phenylethenyl boronic acid pinacol ester
(E)-3a (Scheme 1) for use as an organometallic donor in Suzuki-Miyaura cross-coupling reactions.” The reagent (E)-3a could be
synthesized by hydroboration reaction with catecholborane followed by diol exchange with pinacol.5! However, the use of
catecholborane is not ideal. For example, catechol is sensitive to oxidation, and the catecholborane product can decompose upon
exposure to air or moistute.5? To avoid the use of catechol, a direct hydroboration reaction of 1a with pinacolborane 4 was
sought. The reagent 4 is commercially available and more stable than catecholborane. Although the increased stability of 4 also
lessens its reactivity in the hydroboration reaction. For example, the hydroboration reaction of 1a (1 equiv) with 4 (1.2 equiv) is
sluggish in refluxing THF (65 °C), and only trace amounts of product (I5)-3a was observed after 7 h vide infra. 1t was found that 9-
borobicyclo[3.3.1]nonane (9-BBN) could be used to catalyze the hydroboration reaction of 1a with 4.7 The initially evaluated
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reaction conditions were determined to be satisfactory at the time and were not optimized. The reaction parameters and
purification conditions have since been studied in detail and are described here.
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Scheme 1.

RESULTS AND DISCUSSION

This study began with the use of the previously published reaction conditions: 1a (1.0 equiv), 4 (1.0 equiv), 9-BBN (10 mol%) in
refluxing 0.2 M THF solution (Table 1).7 On a 1 mmol scale, the hydroboration product (E)-3a was isolated from this reaction as
a slightly yellow oil in 62% yield after purification by liquid-liquid extraction and flash chromatography (entry 1). The effect of
reagent stoichiometry on the yield of (I£)-3a was then evaluated. Increasing the amount of 4 to 1.2 equiv increased the yield to
73% (entry 2). Further increasing the amount of 4 to 1.4 equivalents decreased the yield of (E)-3a (entry 3). The use of excess 1la
(1.2 equiv) and 4 (1.0 equiv) as the limiting reactant provided a 69% yield of (E)-3a (entry 4). A range from 0-30 mol% of 9-BBN
was tested, and 20 mol% was found to provide the highest yield of (E)-3a (entries 12-15).

The reaction parameters of concentration, temperature, and a NaOH additive were also evaluated. It was found that
concentrations between 0.2 M and neat® caused little change in the amount of (E)-3a that was isolated (entries 5-7). However, a
more dilute reaction (0.04 M) produced significantly less (E)-3a (entry 5). Toluene and 1,4-dioxane were evaluated as solvent and
were found to provide a lower yield than when THF was used as the reaction solvent (entries 10 and 11). A decreased reaction
temperature resulted in a decreased yield of (E)-3a (entry 8). An increased reaction temperature resulted in an increased yield of
(E)-3a when 1,4-dioxane was used as solvent (entries 9 and 10). However, the yield of (I£)-3 was higher when the reaction was run
in THF at 65 °C than when the reaction was run in 1,4-dioxane at 85 °C (compate entries 2 and 10). The addition of NaOH (5
mol%) resulted in a slightly decreased yield of (E)-3a (entry 16).38

Various stationary phases were evaluated for the purification of (E)-3a by flash chromatography. The use of a boric acid capped
silica provided a negligible difference in yield and purity as determined by '"H NMR (entry 17).5% The crude product (E)-3a was
entirely lost when the flash chromatography was conducted with a dry, neutral alumina stationary phase (entry 18).

AJIR Volume 17 | Issue 1 | June 2020 4



American Journal of Undergraduate Research

www.ajuronline.org

Table 1. Evaluation of the reaction parameters of the 9-BBN-catalyzed hydroboration reaction of 1a with 4.

Z

1a, equiv.

+

H

o}

|
,B-O

4, equiv.

9-BBN (mol%)

O

B
solvent (conc.) ©/\/
temp. (°C) (E)-3a

-0

entry HB(pin), mmol 9-BBN, mol% solvent, conc. temp., °C yield,* %

1

15

16¢
17f
188

1

1.2
1.4
1

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

10
10
10
10
10
10
10
10
10
10
10
5

20
30
10
10
10

THF, 0.2
THF, 0.2
THF, 0.2
THF, 0.2
THF, 0.04
THF, 1.0
neatc

THF, 0.2
dioxane, 0.2
dioxane, 0.2
toluene, 0.2
THF, 0.2
THF, 0.2
THF, 0.2
THF, 0.2
THEF, 0.2
THF, 0.2
THF, 0.2

65
65
65
65
65
65
65
45
65
85
65
65
65
65
65
65
65
65

62
73
67
69
53
71
69
54
48
59
54
0d
46
76
71
66
63
0

“Yield of isolated, purified product.
1.2 equiv of phenylacetylene was used.

<9-BBN was used as a 0.5 M solution in THF. The final reaction concentration was 2.5 M.

dNo product was observed after 7 h.

NaOH (5 mol%) was added as a co-catalyst.
Borated silica was used as the chromatography stationary phase.
¢Dry, neutral alumina was used as the chromatography stationary phase

The optimized reaction conditions of 1 (1.0 equiv), 4 (1.2 equiv), 9-BBN (20 mol%y), and THF [0.2] at 65 °C wete then used to
evaluate the scope of compatible p-substituted terminal aromatic alkynes la—e. The electronically neutral parent alkyne 1a
provided the highest yield (76%) and was found to react the fastest under the optimized reaction conditions (entry 1). Substrates
with electron-donating methyl and methoxy groups provided a good yield of the desired products (I£)-3b and (E£)-3c (entries 2
and 3). A substrate bearing an electron-withdrawing methyl ester group provided the lowest yield of the substrates evaluated
(entry 4). The good yield of the bifunctional, 4-bromo derivative (FE)-3e is especially interesting because it could be used as an
organic electrophile or organometallic donor in a Suzuki-Miyaura cross-coupling reaction. Complete control of the alkene

geometry of (E)-3a—e was observed by '"H NMR spectroscopy in all of the cases studied.
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Table 2. Evaluation of the optimized reaction conditions with 1a and electronically diverse p-substituted terminal aromatic
alkynes 1b—1le.

= o}
X 0 9-BBN (20 mol%) 5
R * B X770
= H -~0 THF [0.2], 65 °C R+
1a-e, 1 mmol 4, 1.2 equiv. Z (E)-3a-e
entry product yield % reaction time (h)

?
B

1 @/\/
(E)-3a
?
2 W B \O 640/0 2
(E)-3

?
B

3 e 65 ;
~o (E)-3
4 -0 49% 7
-9 (E)-3d
(o]

0

5 m B ~0 72% 3
Br (E)-3e

METHODS AND PROCEDURES

General Procedure: An oven-dried, round-bottom flask equipped with a magnetic stir-bar was fitted with an oven-dried Liebig
condenser and sealed with high-vacuum grease. The reflux apparatus was capped with a septum and purged with a balloon of
argon that was introduced and evacuated through a needle for 15 minutes. The following were added sequentially by syringe
under a balloon of argon: the terminal aromatic alkyne, pinacolborane, 9-BBN ([0.5] in THF), and finally a small portion of
solvent to wash all of the reagents into the round-bottomed flask. The reaction solution was refluxed in a preheated oil bath at 65
°C. Reaction aliquots were analyzed by thin-layer chromatography (TLC) to monitor the disappearance of the alkyne starting
material. When the reaction was determined to be complete, it was cooled to room temperature, extracted with ethyl acetate,
washed with water, brine, dried with sodium sulfate, filtered and concentrated by rotary evaporation (50 °C, 2 torr). The crude
product was purified by flash chromatography on silica. The amount of silica used in the chromatography was approximately 65
times the mass of the concentrated crude product. The eluent began with 98.5:1.5, hexane/ethyl acetate and increased to 95:5,

K<

76% 1.5

X<

3
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hexane/ethyl acetate until the product was completely eluted. The product was concentrated 7 vacuo (2 tott) to afford the desired
product.

Procedure for the Synthesis of 4,4,5,5-Tetramethyl-2-/(1E )-2-phenylethenyl]-1,3, 2-dioxaborolane ((E)-3a)

P
Z o)
o) 9-BBN (20 mol%)

|
B. > B0
H "0 THF [0.2], 65 °C
1a, 1 mmol 4, 1.2 equiv. (E)-3a

Following the General Procedure, phenylacetylene (110 pL, 1.0 mmol, 1.0 equiv), pinacolborane (174 pL, 1.2 mmol, 1.2 equiv), 9-
BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 1.5 h. Purification by
aqueous workup and flash chromatography afforded 175 mg (76%) of (E)-3a as a slightly yellow oil.38

Data for 4.4.5,5-Tetramethyl-2-/(1F)-2-phenylethenyl]-1,3,2-dioxaborolane (E)-3a):
'H NMR: (400 MHz, CDCl5)
7.48-7.45 (m, 2 H), 7.40 (d, ] = 18.5,1 H), 7.33-7.23 (m, 3 H) 6.17 (d, / = 18.5, 1 H), 1.29 (s, 12 H).
13C NMR: (101 MHz, CDCl3)
149.5,137.5, 128.9, 128.6, 127.1, 83.4, 24.9.
IR: (neat)
3080 (w), 3054 (w), 3018 (w), 2978 (w), 2928 (w), 1623 (m), 1577 (w), 1495 (w), 1450 (m), 1391 (m), 1371 (m),
1346 (s), 1322 (s), 1271 (m), 1237 (m), 1210 (m), 1142 (s), 1109 (w), 997 (m), 969 (m), 899 (m), 851 (m), 748
(m), 692 (m), 660 (w), 641 (w).
MS: (EL 70 eV)
230 (IM]*, 49), 229 (12), 215 (24), 157 (11), 145 (38), 144 (69), 143 (10), 131 (56), 130 (100), 129 (92), 118 (10),
114 (14), 105 (31), 104 (15), 103 (16), 85 (10), 78 (12), 77 (21).
TLC: Rf0.53 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnOy]

Procedure for the Synthesis of 4,4,5,5-Tetramethyl-2-/(1E)-2-4-methylphenyl)ethenyl]-1,3,2-dioxaborolane ((E)-3b)

/
Z o)
o) 9-BBN (20 mol%)
+

|
B > B0
H°~0 THF [0.2], 65 °C
1b, 1 mmol 4, 1.2 equiv. (E)-3b

Following the General Procedure, 4-tolylacetylene (127 pL, 1.0 mmol, 1.0 equiv), pinacolborane (174 pL, 1.2 mmol, 1.2 equiv), 9-
BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 2 h. Purification by
aqueous workup and flash chromatography afforded 157 mg (64%) of (E)-3b as a slightly yellow 0il.37

Data for 4,4,5,5-Tetramethyl-2-|(1E)-2-d-methylphenyl)ethenyl]-1,3, 2-dioxaborolane ((E)-3b)
'H NMR: (400 MHz, CDCl3)
7.40-7.38 (m, 2 H), 7.38 (d, ] = 18.5, 1 H), 7.15-7.13 (m, 2 H), 6.11 (d, ] = 18.5, 1 H), 2.34 (s, 3 H), 1.31 (s, 12
H).
13C NMR: (101 MHz, CDCl3)
149.0,139.1, 134.9, 129.4, 127.2, 83.4, 25.0, 21.5.
IR: (neat)
2976 (w), 2926 (w), 1625 (m), 1569 (w), 1511 (w), 1479 (w), 1451 (w), 1411 (w), 1379 (m), 1370 (m), 1345 (m),
1320 (s), 1285 (w), 1264 (w), 1220 (w), 1204 (w), 1178 (w), 1165 (w), 1138 (s), 1109 (m), 1019 (s), 999 (m), 969
(m), 950 (w), 901 (w), 853 (w), 843 (m), 829 (w), 796 (s), 759 (W), 712 (w), 676 (W), 659 (W), 642 (w), 580 (w),
517 (w), 492 (m), 453 (w).
MS: (EL 70 eV)
245 (IM+1]%, 12), 244 (IM]*, 69), 243 (IM-1]*, 17), 229 (21), 171 (12), 159 (40), 158 (54), 145 (38), 144 (92), 143
(100), 132 (19), 128 (47), 127 (13), 119 (17), 118 (12), 117 (43), 116 (29), 115 (36), 91 (18), 43 (15), 41 (17), 40
(11).
TLC: R¢ 0.42 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnOy]
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Procedure for synthesis of 2-|(1E)-2-(4-Methoxyphenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxcaborolane ((E)-3c)

=
= o)
o) 9-BBN (20 mol%)

|
+ L ~B-0
~o H B0 THF [0.2], 65 °C
1c, 1mmol 4, 1.2 equiv. ~o (E)-3¢

Following the General Procedure, 4-ethynylanisole (130 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 pL, 1.2 mmol, 1.2 equiv),
9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 3 h. Purification by
aqueous workup and flash chromatography afforded 132 mg (51%) of (E)-3c as a slightly yellow 0il.46

Data for 2-/(1E)-2-#-Methoxyphenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3c)
'H NMR: (400 MHz, CDCl3)
7.45-7.42 (m, 2 H), 7.35 (d, ] = 18.4, 1 H), 6.88-6.85 (m, 2 H), 6.01 (d, ] = 18.4, 1 H), 3.81 (s, 3 H), 1.31 (s, 12
H).
13C NMR: (101 MHz, CDCl3)
160.4, 149.2, 130.6, 128.6, 114.1, 83.4, 55.4, 25.0.
IR: (neat)
2976 (w), 2932 (w), 2836 (w),1697 (w), 1624 (w), 1624 (w), 1603 (m), 1575 (w), 1509 (m), 1457 (w), 1379 (w),
1370 (w), 1351 (m), 1319 (m), 1303 (m), 1291 (w), 1250 (m), 1210 (m), 1194 (w), 1170 (m),1140 (m), 1105 (w),
1032 (m), 995 (w), 969 (m), 900 (w), 852 (m), 814 (m), 758 (w), 734 (w), 720 (w), 699 (w), 675 (w), 644 (w), 607
(w), 607 (w), 597 (w), 578 (w), 541 (w), 519 (m), 450 (w).
MS: (EL 70 eV)
261 (IM+1], 17), 260 (IM]*, 100), 259 ([M-1]*, 24), 245 (17), 175 (30), 174 (19), 161 (45), 160 (78), 159 (47),
148 (15), 146 (10), 145 (23), 144 (99), 143 (28), 135 (15), 121 (16), 117 (24), 77 (12), 43 (13), 41 (15), 40 (14).
TLC: R¢0.26 (hexane/ethyl acetate, 95:5) [silica gel]

Procedure for the Synthesis of 4-[(1E)-2-(4,4,5,5- Tetramethyl-1,3,2-dioxaborolan-2-yl)ethenyl] benzoic acid methyl ester (£)-3d)

=
= 0]
o) 9-BBN (20 mol%) B
0 * B - 20
P H-°~0 THF [0.2], 65 °C
o 1d, 1 mmol 4, 1.2 equiv. -~ (E)-3d
0]

Following the General Procedure, methyl 4-ethynylbenzoate (160 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 pL, 1.2 mmol, 1.2
equiv), 9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 7 h. Purification
by aqueous workup and flash chromatography afforded 149 mg (52%) of (E)-3d as off-white crystals.46

Data for 4-/(1E)-2-(4,4,5,5- Tetramethyl-1,3, 2-dioxaborolan-2-yl)ethenyl]benzoic acid methyl ester ((E)-3d)
'H NMR: (400 MHz, CDCl3)
8.00-7.98 (m, 2 H), 7.53-7.51 (m, 2 H), 7.40 (d, ] = 18.4, 1 H), 3.89 (s, 3 H), 1.30 (s, 12 H).
13C NMR: (101 MHz, CDCls)
166.8, 148.2, 141.8, 130.2, 130.0, 127.0, 83.6, 52.2, 24.9.
IR: (neat)
2975 (w), 2950 (w), 2931 (w), 2848 (w), 1712 (s), 1672 (w), 1627 (m), 1605 (m), 1566 (w), 1487 (w), 1441 (m),
1413 (w), 1380 (w), 1368 (m), 1349 (s), 1319 (s), 1275 (s), 1214 (m), 1195 (m), 1173 (m), 1149 (m), 1111 (s),
1015 (w), 1002 (m), 972 (m), 902 (w), 872 (m), 855 (m), 844 (m), 835 (m), 804 (w), 758 (s), 703 (m), 690 (m),
667 (w), 652 (w), 638 (m), 630 (m), 579 (w), 518 (w), 508 (m), 487 (w), 479 (w), 451 (w).
MS: (EL 70 eV)
288 (IM]*, 49), 287 (IM-1]*, 15), 273 (32), 257 (19), 203 (29), 202 (57), 189 (20), 188 (30), 187 (53), 176 (18), 172
(13), 171 (15), 158 (11), 157 (100), 156 (32), 143 (45), 130 (11), 129 (39), 128 (17), 77 (29), 59 (15), 43 (20), 41
(21).
MP: 108-109 °C
TLC: Rs0.18 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnOy]
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Procedure for the Synthesis of 2-(1E)-2-(4-Bromophenyl)ethenyl]-4,4,5,5-tetramethyl-1,3, 2-dioxaborolane ((E)-3e)

=
2 o)
o) 9-BBN (20 mol%)

|
g B0
Br H -0 THF [0.2], 65 °C
1e, 1 mmol 4, 1.2 equiv. Br (E)-3e

Following the General Procedure, 1-bromo-4-ethynylbenzene (309 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 pL, 1.2 mmol,
1.2 equiv), 9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 3 h.
Purification by aqueous workup and flash chromatography afforded 220 mg (71%) of (E)-3e as white crystals.3?

Data for 2-[(1E)-2-(4-Bromophenyl)ethenyl]-4,4,5, 5-tetramethyl-1,3, 2-dioxaborolane ((E£)-3e)
'H NMR: (400 MHz, CDCl3)
7.47-7.44 (m, 2 H), 7.36-7.32 (m, 2 H), 7.32 (d, ] = 18.5, 1 H), 6.14 (d, ] = 18.5, 1 H), 1.31(s, 12 H).
13C NMR: (101 MHz, CDCls)
148.2, 1306.6, 131.9, 128.7, 123.0, 83.6, 25.0.
IR: (neat)
3087 (w), 3059 (w), 3046 (w), 3007 (w), 2973 (w), 2929 (w), 2290 (w), 1906 (w), 1701 (w), 1624 (m), 1583 (w),
1564 (w), 1486 (m), 1467 (w), 1401 (m), 1378 (w), 1370 (w), 1343 (m), 1319 (s), 1301 (m), 1296 (m), 1268 (m),
1209 (m), 1165 (w), 1138 (m), 1110 (m), 1067 (m), 1006 (m), 991 (m), 968 (m), 952 (w), 899 (w), 852 (m), 820
(W), 799 (s), 706 (w), 693 (w), 667 (w), 653 (w), 638 (m), 628 (w), 598 (w), 579 (w), 515 (s), 485 (w), 453 (w).
MS: (EL 70 eV)
310 (IM+2]%, 50), 309 (IM+1]*, 21), 308 ([M]*, 51), 307 (IM-1]*, 14), 295 (22), 293 (22), 225 (22), 224 (48), 223
(24), 222 (47), 211 (27), 210 (85), 209 (65), 208 (89), 207 (39), 198 (16), 196 (17), 194 (23), 192 (23), 144 (31),
143 (100), 139 (10), 131 (10), 130 (59), 129 (92), 128 (47), 103 (14), 102 (23), 101 (11), 85 (21), 77 (55), 76 (12),
75 (11), 59 (13), 57 (12), 43 (34), 42 (11), 41 (30), 40 (39).
MP: 78-79 °C
TLC: R¢0.42 (hexanes/ethyl acetate, 95:5) [silica gel, aqueous KMnOy]

CONCLUSION

(E)-2-phenylethenyl boronic acid pinacol ester derivatives can be readily prepared by 9-BBN-catalyzed hydroboration reaction of
terminal aromatic alkynes with pinacolborane. The use of 20 mol% of 9-BBN was found to provide the best yield of the
hydroboration product. A variety of electronically diverse substrates provided moderate to good yields of the (E)-2-phenylethenyl
boronic acid pinacol ester derivatives (I£)-3a—e. The bifunctional, 4-bromo derivative is especially interesting because it could be
used as an organic electrophile or organometallic donor in a cross-coupling reaction. Complete control of the alkene geometry of
the alkenylboronic ester product was observed in all of the cases studied. We intend to continue to explore the scope of this
reaction and the synthetic utility of the boronic acid pinacol ester products.
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PRESS SUMMARY

Boron containing organic compounds are useful reagents in the synthesis of important carbon-containing medicines, materials,
and fine chemicals. The alkenylboronic acid pinacol esters formed from hydroboration reaction of alkynes with pinacolborane are
stable, easy to handle, and useful in many synthetic transformations. However, pinacolborane lacks the reactivity necessary to
undergo facile hydroboration reaction with terminal aromatic alkynes. It was discovered that 9-borobicyclo[3.3.1]nonane (9-BBN)
can be used to catalyze the hydroboration reaction of terminal aromatic alkynes with pinacolborane. The parameters of the
experimental procedure were evaluated and an optimal set of reaction conditions were found. This work provides synthetic
chemists with a method to prepare these important compounds.
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